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Constant Weight Codes: An Approach Based on
Knuth’s Balancing Method

Vitaly Skachek and Kees A. Schouhamer Immink

Abstract—In this article, we study properties and algorithms
for constructing sets of constant weight codewords with bipolar
symbols, where the sum of the symbols is a constant q, q 6= 0. We
show various code constructions that extend Knuth’s balancing
vector scheme, q = 0, to the case where q > 0. We compute the
redundancy of the new coding methods. Finally, we generalize
the proposed methods to encoding of imbalanced arrays in two
or more dimensions.

Index Terms—Balanced code, channel capacity, constant-
weight code, constrained code, magnetic recording, optical
recording.

I. INTRODUCTION

Let q be an integer. A set C, which is a subset of{
w = (w1, w2, . . . , wn) ∈ {−1,+1}n :

n∑
i=1

wi = q

}
,

is called a constant weight code of length n. If q = 0, the code
C is called a balanced code. A vector w ∈ C is called a code
word. The weight of a word equals the number of ‘+1’s in
it. An encoder for the code C is an invertible mapping from
the set of all vectors w ∈ {−1,+1}m onto the vectors in
C ⊆ {−1,+1}n, for some integer m ≥ 1. The redundancy of
the encoder is n−m. For practical purposes, we are interested
in encoders which are simple and computationally efficient,
and whose inverse, decoder, is also computationally efficient.

Balanced codes have found application in cable transmis-
sion, optical and magnetic recording. A survey of properties
and methods for constructing balanced codes can be found
in [9]. A simple encoding technique for generating balanced
codewords, which is capable of handling (very) large blocks
was described by Knuth [11] in 1986.

For a general value of q, constant weight codes are useful in
a variety of applications such as data storage, fault-tolerant
circuit design and computing, pattern generation for circuit
testing, identification coding, and optical overlay networks.
For thoroughful discussion about various applications of
constant weight codes, see [17] and the references therein.
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For example, the use of constant weight codes in off-chip
signaling allows for minimizing the power-supply current
changes. These current fluctuations cause a voltage drop
between the chip and circuit board, and lead to significant sys-
tem noise [16], [17]. Constant weight codes are useful in de-
tection of unidirectional errors in memories and systems-on-
chip [3], [23, pp. 159–160]. They can be employed in delay-
insensitive communication in asynchronous systems [4], [22].

Constant weight codes were recently proposed for use with
rank modulation in NAND flash memory devices [7]. They
were also shown to be efficient in coping with electrical
charge leakage in the cells, when used with dynamic reading
thresholds [24], [25].

Efficient encoding methods for constant weight codes,
suitable for use in VLSI circuits, were studied in [17]. That
paper focuses primarily on hardware implementation of such
encoders. In particular, the authors propose a parallel imple-
mentation, which can be efficiently implemented on a single
chip. In the implementation proposed in [17], by building
on the idea proposed in [2], a set of balancing functions is
applied in parallel to the input data. If a sufficiently large
set of balancing functions is used, then at least one function
returns the desired imbalanced output.

In contrast with [17], we consider sequential encoding
algorithms. It should be noticed that some of the methods
proposed in our work can be efficiently implemented in a
parallel manner, while the others can not. Generally, we leave
the question of parallelization of the discussed algorithms
outside of the scope of this paper.

As of today, a simple sequential encoding algorithm for
producing a word with a prescribed imbalance q 6= 0 is
not known. The publications dealing with constructions of
unbalanced codes that the authors are aware of are the
geometric approach by Tian et al. [20] and the enumerative
method by Schalkwijk [14] (see also [5]). Below, we briefly
discuss these two methods.

An interesting geometric encoding method proposed in [20]
uses a w-dimensional Euclidian space representation of the
codewords, where w = (n+q)/2 is the weight of the encoded
word. The encoding is done by dissectioning a polytope in
that space. The time complexity of the proposed method is
Θ(w2), and if w = Θ(n), then the complexity of this method
behaves as Θ(n2). Moreover, the rate of the produced code
is not optimal for the targeted small values of the weight w.
As the authors of [20] mention, for the targeted regime, the
produced redundancy is proportional to n.

By contrast, the redundancy produced by Schalkwijk’s
enumeration method [14] is essentially optimal. However, the
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enumeration method has some drawbacks. First, it requires
large registers. Second, it suffers from error propagation,
namely even a small number of corrupted bits leads to a
massive destruction of data when the decoding algorithm
is applied. Third, this method has higher complexity. For
example, if the enumerative algorithm is implemented in a
rather straightforward manner, the resulting complexity scales
at least Ω(w2) operations over integers. If q is small, the
complexity of this method is too high. It is worth mentioning
that Ryabko [13] has reduced the complexity of enumerative
algorithms to O(n(log n)c) bit operations, where c ≥ 2 is
some fixed constant.

In this article we study various simple and efficient meth-
ods of generating bipolar codewords of imbalance q, q 6= 0.
These methods can be readily implemented in hardware,
where massive error propagation can be avoided. Without loss
of generality we assume q > 0, since, for q < 0, codewords
can simply be obtained by inverting all m symbols of a
codeword with q > 0. We mainly target a regime where q is
small compared to n. In that range of q, we aim at developing
encoding algorithms, which produce rather small redundancy.
Observe however, that for the case q = 0, the original
Knuth’s algorithm produces redundancy which is suboptimal.
Therefore, in our case for q > 0, we aim at developing
methods which produce small additional redundancy relative
to what Knuth’s algorithm produces.

The paper is structured as follows. In Section II we revisit
Knuth’s algorithm. In Section III we present several encoding
schemes for codes with imbalance q 6= 0. In Section IV, we
present the encoding scheme for two-dimensional imbalanced
arrays. In Section V, we summarize the results in the paper.

II. BACKGROUND

Let the word be w = (w1, w2, . . . , wn), wi ∈ {−1,+1},
and let q be the imbalance of the user symbols defined by

q =

n∑
i=1

wi. (1)

The cardinality of the set of all q-balanced words of length
n, n and q even, can be approximated by [15](

n
n+q
2

)
≈ 2n√

nπ
2

e−
q2

2n , n >> 1.

Then the redundancy of a full set of q-balanced codewords
is

1

2
log2 n+

q2

2n
log2 e+ 0.326, n >> 1. (2)

We notice that the redundancy consists of two terms, namely
the term 1

2 log2 n + 0.326, the redundancy of the set of
balanced words, and the q-dependent term q2

2n log2 e. Observe
that the q-dependent term decreases with increasing n.

Knuth’s encoding scheme

Knuth published an algorithm for generating sets of bipolar
codewords with equal numbers of ‘+1’s and ‘−1’s [11]. In
the simplest embodiment of Knuth’s method, an m-bit user

word, m even, which consists of bipolar symbols valued
‘±1’, is forwarded to the encoder. The encoder inverts the
first k bits of the user word, where k is chosen in such a
way that the modified word has equal numbers of ‘+1’s and
‘−1’s. Such an index k can always be found. The integer
k is represented by a balanced (prefix) word u of length p.
The p-bit prefix word followed by the modified m-bit user
word are both transmitted, so that the rate of the code is
m/(m + p). The receiver can easily undo the inversion of
the first k bits received by decoding the prefix. Both encoder
and decoder do not require large look-up tables, and Knuth’s
algorithm is therefore very attractive for constructing long
balanced codewords. Knuth showed that the redundancy p is
roughly equal to log2m, for m >> 1 [11], [10].

Modifications of the generic scheme are discussed in
Knuth [11], Alon et al. [2], Al-Bassam & Bose [1], Tallini,
Capocelli & Bose [18], and Weber & Immink [10].

We will now try to answer the question of how to construct
a constant weight code with codewords with unbalance q 6= 0.

III. METHODS FOR CONSTRUCTING CONSTANT WEIGHT
CODES

A. General setup

Let m be an even number. In the sequel, for any w =
(w1, w2, . . . , wm), wi ∈ {−1,+1}, we use the notation

d(w)
4
=

m∑
i=1

wi (3)

to denote the imbalance of w. We also denote by w(k) the
word w with its first k bits inverted, and by σk(w) we denote
d(w(k)).

Now, assume that w = (w1, w2, . . . , wm) is the bipolar
input word. For convenience, we denote q′ 4= d(w). Then,
we have

σk(w) = −2

k∑
i=1

wi + q′ . (4)

By far the simplest method for generating q-balanced
codewords first generates a balanced codeword by using
Knuth’s method, and appends q ‘+1’ symbols to the bal-
anced codeword. The method is attractive as it is simple
to implement, and as it avoids mass error propagation. The
redundancy of this scheme is p+ q, where p ≈ log2m is the
redundancy of Knuth’s base scheme. From (2) it follows that
this simple method is far from optimal since the additional
redundancy (relative to the redundancy produced by Knuth’s
algorithm) does not decrease with increasing m.

Alternative methods, to be discussed below, first use a
slightly modified version of Knuth’s algorithm for generating
q-balanced words. These methods may fail to generate such
words and, in a second step, the ’failed’ words are modified.
Information regarding this modification made is, as in Knuth’s
scheme, carried by the prefix.

Assume that we apply Knuth’s algorithm to w to generate
a q-balanced codeword, 0 ≤ q ≤ m. That is, we scan w
and seek an index k, 0 ≤ k ≤ m, such that σk(w) = q. As
shown by Knuth, such an index k can always be found for
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q = 0. For q 6= 0, however, the encoder may fail to find such
an index k. Since, from the above, σ0(w) = q′ (no symbols
inverted) and σm(w) = −q′ (all m symbols inverted), we
conclude that words w with

σk(w) < q , for all 0 ≤ k ≤ m , (5)

cannot be translated into a q-balanced codeword (in particular,
for such words we have |q′| < q). User words satisfying (5)
are called delinquent words. Evidently, delinquent words
cannot be encoded by Knuth’s algorithm, and thus some
alternative method has to be found. In the sequel, we present
various code constructions that encode delinquent words.

B. Unbalanced prefix

It is assumed that the index k in Knuth’s algorithm is rep-
resented by a p-bit balanced prefix u, for p even. Delinquent
words can be balanced by the introduction of prefixes of
imbalance qp, 2 ≤ qp ≤ p. If the imbalance of a delinquent
word is negative, i.e., q′ < 0, then we invert all symbols of
that user word. A delinquent word or its inverted version may
be balanced by choosing a prefix with imbalance qp = q−|q′|.

An inversion made can be signalled by a unique prefix,
thus requiring two distinct prefixes of total imbalance qp,
2 ≤ qp < q. For qp = q, since q′ = 0, we only need
one prefix, the all-ones prefix. The unbalanced prefix is an
indication to the decoding side that the user word w was not
modified. Thus, for the case q ≤ p, it is quite straightforward
to generate a codeword having imbalance q by invoking a
simple modification of Knuth’s method. The redundancy of
this method is log2m+ o(logm) for q ≤ p, the same as that
of Knuth’s method for q = 0.

C. Flipping tail patterns

Method description

In an alternative way of encoding, the encoder locates
(q − q′)/2 symbols valued ‘−1’ in the delinquent w, and
these ‘−1’ symbols are inverted into ‘+1’ symbols. Note that,
since |q′| ≤ q − 2, at most (q − 1) ‘−1’ symbols must be
inverted. The positional information of the (q−q′)/2 inverted
symbols will be conveyed to the receiver by the prefix. The
quantity Np will denote the number of distinct position com-
binations of inverted symbols needed to unbalance all possible
delinquent words. The prefix conveys either information on
the index k (in case Knuth’s algorithm does not fail) or on
the positional information of the inverted symbols (in case
Knuth’s algorithm fails). By decoding the prefix, the decoder
can undo the modifications made.

The index k ∈ {0, . . . ,m} requires m + 1 combinations
of the prefix, while the positional information of the inverted
symbols requires Np combinations, thus totaling m+ 1 +Np
prefix combinations. We will now identify a segment of a
delinquent word w, where the (q − q′)/2 symbols ‘−1’ can
be found, so that Np and the redundancy of the new method
can be calculated. We will first exemplify the above with a
simple example, where q = 2.

Example 3.1: For q = 2, we find that all delinquent words
w are characterized by the following properties
(a) q′ = 0;
(b) w1 = +1;
(c) wm = −1.

(Please note, however, that there are many words w satisfying
(a)-(c), which are not delinquent.)

From q′ = 0, we conclude that only one ‘−1’ has to
be located and inverted in the delinquent word. As the tail
symbol of all delinquent words is wm = −1, we conclude
that by inverting the tail symbol, we can translate any user
word w into a codeword with imbalance q = 2. Clearly,
we require m + 2 different prefixes to uniquely identify the
modification made at the transmitter’s site.

Lemma 3.1: Let w be a delinquent word of even length
m, q ≥ 2 and q be even, and let ` be an integer, 1 ≤ ` ≤ m.
Then there are at least

`+ 1

2
− q + q′

4

symbols ‘−1’ in the ` tail bits (wm−`+1, wm−`+2, · · · , wm).
Proof: In case Knuth’s encoder fails, we have for any 0 ≤
k ≤ m that σk(w) < q and σk(w) is even. Thus from (4)
we obtain

σk(w) = −2

k∑
i=1

wi + q′ ≤ q − 2, 0 ≤ k ≤ m , (6)

or

2

m∑
i=k+1

wi ≤ q + q′ − 2, 0 ≤ k ≤ m . (7)

Let `+ be the number of ‘+1’s in the last ` positions of w
and `− be the number of ‘−1’s in these ` positions. We have
that

`+ + `− = ` . (8)

From (7) (with k = m− `), we also have

2`+ − 2`− ≤ q + q′ − 2 . (9)

We conclude from (8) and (9) that

`− ≥ `/2− (q + q′)/4 + 1/2 ,

as required.

The following Theorem will be used in the encoding
method, which will be presented in the sequel.

Theorem 3.2: Let w be a delinquent word of even length,
q ≥ 2 and q be even. Then there are at least (q − q′)/2
symbols valued ‘−1’ in the ` = (3q − q′)/2 − 2 tail bits
(wm−`+1, wm−`+2, · · · , wm).
Proof: By setting ` = (3q − q′)/2 − 2 in Lemma 3.1, we
obtain that the number of symbols valued ‘−1’ is at least

(q − q′)/2− 1/2 .

Since q and q′ are both even, and the number of symbols is
integer, we obtain the desired result.
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The following corollary also follows from Lemma 3.1.

Corollary 1: In the q−2+τ tail bits of a delinquent word
of even length there are at least τ/2 symbols valued ‘−1’,
for 1 ≤ τ ≤ q − 1.

Proof: From Lemma 3.1, and by taking ` = q − 2 + τ , we
obtain that the number of symbols valued ‘−1’ is at least

`+ 1

2
− q + q′

4
=
q − 1 + τ

2
− q + q′

4

=
τ

2
+
q − 2− q′

4
≥ τ

2
,

where the last transition is due to |q′| ≤ q − 2.

Example 3.2: Consider the input word w

+ +−+−−+−+−+−++,

where we use ‘+’ for ‘+1’ and ‘−’ for ‘−1’. For this w
we have q′ = 2. Assume that the required imbalance q = 4.
Observe that if we apply Knuth’s algorithm by flipping bits
sequentially, the resulting word will never have imbalance 4.
Then, according to Theorem 3.2, there is at least one symbol
‘−1’ in the last three bits in the word w. Indeed, we see
that there is a ‘−1’ symbol in the third to last position. After
flipping this bit, the total imbalance equals q = 4, as required.

Example 3.3: Consider the input word w

−+−+−−+−+−+−+− .

The unbalance of w equals q′ = −2. Assume that the required
imbalance q = 4, then observe that this cannot be achieved
by flipping the bits sequentially, as in Knuth’s algorithm.
According to Theorem 3.2, there are at least three symbols
‘−1’ in the last five positions in the word w. By flipping
these bits, the total imbalance becomes q = 4, as required.

We therefore conclude that only a limited number of
inversion combinations need to be taken into account. Then,
in case Knuth’s algorithm fails to produce an unbalanced
codeword, we can take care of that ’failed’ word w by
inverting (q − q′)/2 symbols ‘−1’ in the (3q − q′)/2 − 2
tail bits of w. In the worst case, q− 1 symbols ‘−1’ have to
be inverted into a ‘+1’ in 2q − 3 tail symbols.

In the next section, we compute the number of modifica-
tions, Np, that have to be made to delinquent words in order
to generate a q-balanced codeword.

Redundancy computation

The computation of Np is directly related to the compu-
tation of the redundancy of the new method. Note that Np
is independent of the word length m. The number, Np, of
prefixes required to identify the (q− q′)/2 symbol inversions
made in the ` = (3q − q′)/2 − 2 tail bits is upper bounded
by

Np <

q−2∑
q′=−q+2
q′ even

( 3q−q′
2 − 2
q−q′
2

)
,

TABLE I
SET OF SHORTEST TAIL STRINGS FOR q = 4.

q′ = 2 q′ = 0 q′ = −2
−1 −1−1 −1−1−1

−1+1 −1+1−1 −1+1−1−1
−1+1+1 −1−1+1 −1−1+1−1

−1+1+1−1 −1+1+1−1−1
−1+1−1+1 −1+1−1+1−1

or after replacing (q′ + q)/2 by i, where i = 1, 2, · · · , q− 1,
we obtain

Np <

q−1∑
i=1

(
2q − 2− i
q − i

)
.

The exact computation of Np can be accomplished by setting
up a forest of q − 1 binary trees for all possible values of

q′ ∈ {−q + 2,−q + 4, . . . , q − 2} .

Starting from the root with wm, we generate all possible valid
tail strings (wm−k, . . . , wm) of length k + 1, where a string
is valid if 2

∑m
i=m−k wi ≤ q + q′ − 2. We terminate a string

(. . . , wm−2, wm−1, wm) when the string contains (q − q′)/2
symbols ‘−1’. Theorem 3.2 guarantees that the length of a
string is at most 2q − 3. The value of Np is computed by
summing all strings of all q − 1 trees.

For q = 4, the 13 shortest tail strings are given in Table I,
where the right-most symbol of the strings is associated
with the tail symbol wm of a codeword and the tree root.
Appending the above `-bit tail strings to m− ` leading ‘+1’
symbols yields the set of m-bit “unbalancing” vectors {bj},
whose entries are from the set {−1,+1}. The delinquent
input word w is modified using its component-wise product
w · bj with a judiciously chosen “unbalancing” vector bj .
Thus, from the above 13 m-bit “unbalancing” vectors plus
the set of m+ 1 Knuth’s balancing vectors of the form

(−1 − 1 · · · − 1︸ ︷︷ ︸
k

+1 + 1 · · · + 1︸ ︷︷ ︸
m−k

) ,

0 ≤ k ≤ m, we can select at least one vector such that the
inner product of the selected vector and the input word w
equals q = 4 for any even value of m > 4. This component-
wise product w·bj as above is appended to the encoded index
of the chosen vector {1, 2, · · · ,m+ 1 +Np}, thus resulting
in the word of total imbalance q, as required.

The unbalancing vector bj is uniquely determined by the
positions of the symbols ‘−1’ in the tail of length at most
2q − 3 in the encoded word. If we assume that q is fixed,
then the encoding can be done by using a look-up table, or
by using an enumerative coding on the tail of length up to
2q−3. Since q is constant, such encoding takes constant time.

We have computed Np for various values of q. The second
column in Table II shows the results of our computations.

We can improve the redundancy by a small modification of
the tree search: in case q′ < 0, we invert many symbols in a
large tail. This costs a lot of bits of redundancy. Thus, in the
worst case, q′ = −q + 2, we invert q − 1 symbols in 2q − 3
tail symbols. If we assume that we invert all bits of that user
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TABLE II
NUMBER OF PREFIXES, Np , VERSUS q.

q Np
2 1
4 13
6 131
8 1429

10 16795

word, then the imbalance q′ becomes −q′. The worst case
q′ = −q + 2 becomes q′ = q − 2, where only one symbol
has to be inverted in q − 1 tail bits. For this inverted word,
we search for the smallest tail string that contains (q+ q′)/2
symbols valued ‘−1’.

In a systematic way, we set up a forest of q−1 binary trees
as described above, where we follow a valid path until either
we tallied (q−q′)/2 symbols valued ‘−1’ (as described above
in the first method) or we tallied (q + q′)/2 symbols ‘+1’.
The m-bit unbalancing vectors are obtained as follows. The
`-bit tail strings with (q−q′)/2 symbols ‘−1’ are appended to
m−` symbols ‘+1’, while the `-bit tail strings with (q+q′)/2
symbols ‘+1’ are appended to m− ` symbols ‘−1’. We tally
the leaves of all trees, which yields N ′p, the number of tail
strings found.

The value of Np is rapidly mounting with increasing imbal-
ance q. Since Np+1 can be bounded from above by 22q−2, the
redundancy produced by this method is log2(m+ 1 +Np) ≤
max{log2m + 1, 2q − 1}. We conclude that the proposed
method is as optimal as Knuth’s method for 2q << log2m.

D. An alternative approach with several operational modes

In order to encode an arbitrary block of ‘±1’s of length
m ≥ 16 into a block of imbalance q, the methods discussed in
Sections III-B and III-C produce at least ≈ q redundant bits,
in addition to redundancy produced by Knuth’s algorithm.
Below, we introduce an alternative encoding method which
encodes an arbitrary block of data of length m into a block
with imbalance q = 3

2 log2m with only log2m + o(logm)
redundant bits. Hereafter we assume that log2m is even
integer.

Recall that if q′ < 0, we first invert the word. Then, there
are five different modes of operation: modes 1, 2, 3, 4 and
5. Mode 5 contains four different submodes, denoted by 5-
1 – 5-4. The choice of mode depends on the value of q′

and the structure of the input word w. The selected mode
and a possible inversion (or not) are denoted by a special
prefix. There are eight different modes, for each mode there
are also two possibilities for inversion. These 16 possibilities
are represented by balanced prefixes with six bits.

We also make use of a balanced suffix of length log2m+
o(logm). In Modes 1 and 5-1 this suffix denotes the number
of bit flips. In Modes 2 and 5-2 the suffix carries additional
weight, thus making the total imbalance of the word equal q.
In Modes 3 and 5-3, the suffix serves as an index of an entry
in the input word. Modes 4 and 5-4 do not use suffix. Instead,

in these modes, the values of the last log2m− 1 bits in the
tail of the word are encoded by a location of a special string
of length 2 log2m+ 1, which is inserted into the input word.
The tail is then discarded. Therefore, in these two modes, the
resulting length of the word increases by log2m+ o(logm)
bits as well.

Recall that w = (w1, w2, · · · , wm) is an arbitrary input
word, m is even, and q′ =

∑m
i=1 wi. Let q = 3

2 log2m be
an even integer number. Assume without loss of generality,
q′ ≥ 0, otherwise flip all the bits, and mark this in the prefix
of the encoded word. Denote by

µ
4
=

m∑
i=m−log2m+2

wi

a sum of the last log2m− 1 symbols in w.

Mode 1. q′ > 3
2 log2m: In this case, we simply apply

Knuth’s algorithm. We append a balanced suffix of log2m+
o(logm) bits at the tail of the block, to denote the actual
number of bit flips.

Mode 2. 1
2 log2m − 1 ≤ q′ ≤ 3

2 log2m: In this case, we
simply append the suffix of the total imbalance qp = q−q′ ≤
log2m+ 1.

Mode 3. 0 ≤ q′ < 1
2 log2m − 1 and the word w

contains a subsequence “+1 +1 +1 . . . +1” of length σ,
where σ ≥ log2m: Then, the sum of all bits in w, except
for this subsequence, is in the interval [−σ, 12 log2m−2−σ].

If the subsequence of symbols ‘+1’ does not appear at
the end of the word w, then by flipping all the bits in w,
except for the above subsequence and one ‘−1’ immediately
after it, we make the total imbalance to lie in the interval
[2σ − 1

2 log2m, 2σ − 2]. If, however, the subsequence of
symbols ‘+1’ appears at the end of w, then we flip all the bits
in w, except for the above subsequence. The resulting total
imbalance then lies in the interval [2σ − 1

2 log2m+ 2, 2σ].
Then, we sequentially flip the bits in the subsequence

“+1 +1 +1 . . . +1”, from the first to the penultimate, to
make the total imbalance equal q. It is straight-forward to
see that this imbalance can always be achieved. We need
log2m+o(logm) bits to encode the index of the first flipped
bit in this subsequence by the balanced suffix. Observe, that
from knowing that index, the flipped region can be uniquely
determined, and so the whole operation is invertible.

Mode 4. 0 ≤ q′ < 1
2 log2m − 1, the word w contains

no subsequence “+1 +1 +1 . . . +1” of length ≥ log2m and
q′ ≥ µ: Denote ŵ = (w1, w2, . . . , wm−log2m+1). We insert
the following string between two consecutive symbols in ŵ:

−1 +1 +1 +1 . . . +1︸ ︷︷ ︸
s1

−1−1−1 . . . −1︸ ︷︷ ︸
s2

+1 , (10)

s1 + s2 = 2 log2m − 1, s1 ≥ log2m and s2 ≥ 1. Denote
the sum of the elements in this string by η. Under the given
constraints, η can take any odd value in [1, 2 log2m− 3].

We select the values of s1 and s2 such that after the
insertion the total imbalance of the resulting word (i.e., ŵ
with the inserted sequence) becomes 3

2 log2m. Note, that
after the insertion of the string, the imbalance becomes
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q′ − µ+ η. Since q′ ≥ µ, we obtain that

0 ≤ q′ − µ < 3

2
log2m− 2 ,

and is odd, and so there exists a string as above such that
q′ − µ+ η = 3

2 log2m.
Next, we decide on the location of this insertion. The

location of the insertion i ∈ {0, 1, 2, . . . ,m − log2m + 1},
represents the encoding of the last log2m− 1 bits that were
removed from w. These bits can take

2log2m−1 =
m

2

different values. Since m
2 < m− log2m+ 1 (for all m ≥ 4),

we have enough different locations to encode the values of
these bits.

There are two possible cases:
1) There is no other substring “+1 +1 +1 . . . +1” of

length ≥ log2m in ŵ, and so the inserted string can
be uniquely identified.

2) There is another substring “+1 +1 +1 . . . +1” of
length log2m in ŵ. This can happen only if the
inserted string appears immediately before the sequence
of log2m − 1 symbols ‘+1’ in ŵ. In that case the
inserted string can also be uniquely identified by using
the leftmost substring of at least log2m symbols ‘+1’.

Therefore, we see that all steps are invertible.

Mode 5. 0 ≤ q′ < 1
2 log2m − 1, the word w contains

no subsequence “+1 +1 +1 . . . +1” of length ≥ log2m and
q′ < µ: Consider the word w̃ obtained by flipping the first
m−log2m+1 bits in w, in other words w̃ = w(m−log2m+1).
Since

m−log2m+1∑
i=1

wi = q′ − µ < 0 ,

we obtain that

d(w̃) = (µ− q′) + µ > µ ≥ 0 .

Thus, the resulting w̃ falls under one of the cases considered
in Modes 1–4. We apply the corresponding encoding method
in Modes 1–4 to w̃ (we refer to these cases as Modes 5-1 –
5-4, respectively).

As we can see, all encoding modes are invertible. There-
fore, the whole encoding algorithm is invertible.

Time complexity: It can be verified that each mode requires
up to O(m) bit operations and O(m) increments/decrements
of counters of size O(logm) bits.

Example 3.4: In the following toy example assume that we
want to encode an input sequence w of length m = 16 into
an imbalanced codeword with q = 3

2 log2m = 6. Below, we
use ‘+’ for ‘+1’ and ‘−’ for ‘−1’. Let w be

−+−+−−+ + + +−+−−−+ .

For this input word, we have d(w) = 0. Moreover, w contains
a sequence of four consecutive ‘+1’s, and thus we conclude
that Mode 3 of the encoding algorithm should be applied. We
flip all bits in w, except for the sequence of four consecutive

‘+1’s and one ‘−1’ immediately after it. We obtain:

+−+−+ + + + + +− −+ + +− .

The total imbalance is now 6. There is no need to apply more
bit flips. Yet we have to store a pointer to the 7-th symbol
(the first ‘+1’ in the sequence of four ‘+1’s) in order to make
the encoding invertible.

To encoded word, we add a prefix and a suffix. The prefix
denotes that the overall word was not inverted, and that Mode
3 was used. The suffix stores balanced encoding of index 7.

To invert the encoded word, the decoder recovers the mode
and the value of the suffix, and inverts all ‘−1’ from position
7 till the first ‘+1’ (in this case there will be zero such
inversions). Then, the decoder inverts all the bits except the
long sequence of ‘+1’s (that starts at position 7) and one
consecutive ‘−1’.

Example 3.5: As in the previous example, assume that we
want to encode an input sequence w of length m = 16 into
an imbalanced codeword with q = 6. Let w be

−+−−+ +−+ +−+−+−−+ .

In this case d(w) = 0 and µ = −1, and so Mode 4 is
applicable.

Then, we insert the string

−+ + + + + +−+

of length 9 and imbalance 5, in location which is encoded
by the last 3 bits. Thus − − + represents the value of 1 (if
‘−1’ is regarded as binary 0, and ‘+1’ is regarded as binary
1). The resulting encoded word becomes (after the last three
bits are discarded):

− −+ + + + + +−+ +−−+ +−+ +−+−+ .

A prefix needs to be added to this word. This prefix denotes
that the overall word was not inverted, and that Mode 4 was
used.

To invert the encoded word, the decoder recovers the mode.
Then, the decoder identifies the substring of the form (10) at
location 1. It removes this substring, and appends the suffix
that represents encoding of its location, namely “−−+”.

Example 3.6: As in two previous examples, assume that
we want to encode an input sequence w of length m = 16
into an imbalanced codeword with q = 6, and w is

−+−−+ +−+ +−+−−+−+ .

In this case d(w) = 0 and µ = +1, and so Mode 5 is
applicable. Thus, the encoder inverts the first m−log2m+1 =
13 bits to obtain the word w̃ equal

+−+ +−−+−−+−+ + +−+ .

We have that d(w̃) = 2, and so the encoder proceeds as in
Mode 2.

Recall that the prefix needs to be added, in order to encode
the mode number, which is Mode 5-2.
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Other parameter settings

The method described in this section can also be adopted
for some other parameter combinations. For example, for
the input word w of length m and desired imbalance q,
such that m < 22q/3, we can combine the encoding method
in this section with the method outlined in Section III-B.
Alternatively, we may append the “missing” number of ‘+1’s
to make the total imbalance equal to q, as suggested in
Section III-A.

If the length m and desired imbalance q are such that
m > 22q/3, we can use a combined decoder that applies
Knuth’s algorithm to the first m − 22q/3 input bits, and the
encoding algorithm in this section to the remaining 22q/3 bits.
The resulting encoder outputs words with imbalance q and
redundancy

log2(m− 22q/3) +
2

3
q + o(logm) .

Alternatively, for the case m > 22q/3, we can use a combined
decoder when we first apply the encoding algorithm in this
section (resulting in the redundancy larger than the required
q), and then apply Knuth-like algorithm to reduce the total
imbalance down to q. The resulting encoder similarly outputs
words with imbalance q and redundancy 2 log2m+o(logm).
However, the produced redundancy in this case is slightly
larger than in the approach outlined in the previous paragraph.

IV. CODES IN TWO DIMENSIONS

In this section, we generalize the results in Section III to-
wards two-dimensional imbalanced arrays. More specifically,
we consider a problem of encoding an arbitrary sequence of
information bits into a two-dimensional n1 × n2 imbalanced
array. Here, every row in the encoded array has imbalance
q1 and every column has imbalance q2. It must hold that
n1 · q1 = n2 · q2. We propose an efficient algorithm to
solve this task, which can use one of the encoding algorithms
for imbalanced (one-dimensional) words in Sections III as a
subroutine.

Two-dimensional constrained codes were considered for
use in a variety of applications, such as magnetic and optical
disks [8], multi-track storage devices [12] and holographic
storage [21]. In particular, two-dimensional balanced codes
with corresponding encoding and decoding algorithms were
proposed in [19]. For these codes, defined over the binary
alphabet, the number of zeros and ones in every row is equal,
and the numbers of zeros and ones in every column are equal.
Therefore, those codes naturally generalize balanced codes
towards two-dimensional settings.

The algorithm, that we propose in this section, closely fol-
lows the structure of the two-dimensional balancing algorithm
by Talyansky et al. [19]. In particular, when q1 = q2 = 0,
this algorithm is essentially equivalent to its counterpart [19].
However, as we will show, by implementing a small modifi-
cation, the algorithm can handle the case when q1 6= 0 (and
so q2 6= 0).

The proposed algorithm, named Algorithm ENCODE, is
presented in Figure 1 (although it is quite similar to its

counterpart in [19], we show it for the sake of completeness
of the presentation.) For simplicity, we assume here that both
n1 and n2 are powers of two. Later, we will discuss the
modifications to the algorithm needed to take care of the cases
where n1 and n2 are not powers of two.

The algorithm first applies a one-dimensional unbalancing
encoding step to the input string, on a row-by-row basis
(Step 2). Then, in Step 3, Procedure SWAP, which swaps bits
between two two-dimensional subarrays, is recursively used
to make the number of ones in every column of the array
equal. In Step 4, the redundant bits, obtained as a by-product
of the execution of Procedure SWAP, are encoded using the
recursive call to Algorithm ENCODE. In Step 5, the result of
the encoding in Step 4 is appended to the array produced in
Step 2.

The parameter η in the algorithm corresponds to the
smallest size of information sequence, for which the look-
up table is not implemented.

Algorithm ENCODE (Inputs: integer n2, word w).

Step 1: If length of w is smaller than η, encode it into Γ using

look-up table and return.

Step 2: Encode w into an s×n2 array Γ0, in which every row

has imbalance q1.

Step 3: (Γ0,w
′) = SWAP (s, n2,Γ0).

Step 4: Let (n′
1,Γ1) = ENCODE(n2,w

′) .

Step 5: Let Γ T = (Γ0
T | Γ1

T ), and n1 = s+ n′
1.

Output: integer n1 and n1 × n2 array Γ.

Fig. 1. Encoding algorithm for two-dimensional imbalanced arrays.

Procedure SWAP is presented in Figure 2. This procedure
is used to make the number of ones in every column of the
input array equal. It divides the input array into two parts,
each part consists of half the number of the columns in the
input. The bits are sequentially exchanged between the two
parts, until the number of ones in each part becomes equal.
The number of exchanged bits is recorded, and Procedure
SWAP is recursively applied to each of the produced parts.

Generally, the structure of the algorithm is similar to that of
its counterpart in [19], yet there are some differences between
the two algorithms. Thus, the algorithm ENCODE in Figure 1,
uses a slightly modified version of Procedure SWAP. The
new version of the procedure swaps the bits between two
arrays ∆1 and ∆2 until the number of ‘+1’s in both arrays
becomes equal, and so the total imbalance is equal. In Step 2,
Algorithm ENCODE starts with the arrays, where every row
has imbalance q1. In Step 4, Algorithm ENCODE calls itself
recursively to encode the indices used in swapping the data.

We claim that the proposed algorithm will always terminate
with the imbalanced n1 × n2 array as required. To see this,
observe that the imbalance of any row is q1 due to the
correctness of the one-dimensional encoder used, and due
to the fact that during the run of the algorithm, the symbols
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Procedure SWAP (Inputs: integers p1, p2, and p1 × p2 array ∆).

Step 1: Let w′ be an empty string.

Step 2: Let ∆1 and ∆2 be arrays that consist of the first and

the last p2/2 columns of ∆, respectively.

Step 3: For j = 1, 2, . . . , p2/2 and for i = 1, 2, . . . , p1:

swap the bits ∆1(i, j) and ∆2(i, j),

until ∆1 and ∆2 contain equal number of ‘+1’s.

Step 4: Append to w′ the encoding of the indices (i, j)

computed at Step 3.

Step 5: If p2 > 2 then (∆1,w
′′) = SWAP(p1, p2/2,∆1) and

(∆2,w
′′′) = SWAP(p1, p2/2,∆2).

Output: p1 × p2 array ∆, and the string (w′,w′′,w′′′).

Fig. 2. Procedure SWAP.

are not moved between different rows. Moreover, due to the
selection of the parameters, the total imbalance at the end
of the algorithm run is n1 · q1 = n2 · q2. Procedure SWAP
ensures that the imbalances in all columns of the produced
array are equal. Therefore, the imbalance of each column is
q2, as required.

Example 4.1: Assume that we want to encode a string w
given by

−− −+ −− +−

of length m = 8 into 8×4 array, with a row imbalance q1 = 2
and a column imbalance q2 = 4. Assume that we can use a
look-up table that maps an arbitrary input word onto a two-
dimensional imbalanced array with row imbalance q1 = 2 and
number of columns n2 = 4, for all input strings of length up
to seven.

We will use an one-dimensional unbalancing encoder that
maps an arbitrary vector of length 2 onto a vector of length
n = 4 with imbalance q = 2, according to the following
encoding table:

Information word Codeword with q = 2
−− + + +−
−+ −+ ++
+− +−++
++ + +−+

Then, the input and its row-by-row encoding can be written
as the following two-dimensional arrays, respectively:

w =


−−
−+
−−
+−

 and Γ0 =


+ + +−
−+ ++
+ + +−
+−++

 .

Next, Procedure SWAP is applied to Γ0 in order to obtain

an equal number of ones in ∆1 and ∆2, where

∆1 =


++
−+
++
+−

 and ∆2 =


+−
++
+−
++

 .

In our case, no swaps of bits are needed, and w′ is set to
“−−−”, the binary encoding of an integer 0. Then, Procedure
SWAP is recursively applied to each of ∆1 and ∆2. ∆1 has
already equal number of ones in its first and second columns,
and so it is not changed, and w′′ is set to “−−” to represent
0 bit swaps. By contrast, ∆2 becomes

−+
++
+−
++

 ,

and w′′′ is set to “−+” to represent 1 bit swap. The resulting
string (w′,w′′,w′′′) is

−−− −− −+ ,

which is encoded recursively into Γ1 using a look-up table.
The resulting output of the algorithm is (Γ0

T | Γ1
T )T , where

Γ0 =


+ +−+
−+ ++
+ + +−
+−++


and Γ1 is obtained from the look-up table.

Next, we turn to estimate the redundancy of the pro-
posed algorithm. Since the redundancy produced by the one-
dimensional unbalancing algorithm used within the procedure
ENCODE can vary, the redundancy analysis herein is some-
what different from its counterpart in [19]. Hereafter, we
denote by µ(n2) a redundancy produced by the unbalancing
algorithm in Step 2 (where n2 is the length of the resulting
imbalanced vector).

Assume that the algorithm outputs array of size n1 × n2,
where n1 = s + n′1. Let ρ(n1 × n2) be the redundancy
corresponding to encoding information into n1 × n2 arrays.
The redundancy produced in all levels of recursion in Step
2 is n1 · µ(n2). Analogous to [19], the redundancy, pro-
duced in (the first level of recursion in) Step 3 is less than
n2(1 + dlog2 se). In the second level of recursive call to
procedure ENCODE, the value of s becomes at most⌈

n2(1 + dlog2 se)
n2 − µ(n2)

⌉
. (11)

If we assume that µ(n2) ≤ ηn2 for some constant η < 1
for all n2 large enough1, then the expression in (11) can be
written as O(log s). We conclude that the value of s decreases
as a log-function with the number of levels of recursion.

1The assumption that µ(n2) ≤ ηn2 holds for all encoding methods
presented in Section III and in [5], [14] and [20].
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To summarize, we have

ρ(n1 × n2) ≤ n1 · µ(n2) + n2 · dlog2 s+ 1e+O(n2 log s)

≤ n1 · µ(n2) + n2 · log2 n1 +O(n2 log n1) .

It can be seen that the optimality of the produced array
strongly depends on the optimality of µ(·), the redundancy
produced by the used encoding method for one-dimensional
vectors.

The analysis of the encoding time complexity follows the
lines of [19]. Step 1 (at all levels of recursion) requires
applying a one-dimensional imbalancing algorithm to O(n1)
rows. If the algorithm with time complexity O(n2) is used,
then Step 1 costs O(n1n2) operations. Procedure SWAP
works analogously to its counterpart in [19], and so Step 3 in
the algorithm (at all levels of recursion) takes O(n1n2·log n2)
operations overall. Thus, the total time complexity is bounded
by O(n1n2 · log n2).

The Procedure SWAP can be modified to handle arrays of
sizes which are not powers of two. The required modification
is slightly different from that done in [19]. Assume that ∆
is odd. Suppose also that ∆1 consists of the first (p2 − 1)/2
columns of ∆, and ∆2 consists of the remaining (p2 + 1)/2
columns. If the total imbalance of ∆1 is q2 · (p2− 1)/2, then
no further processing is needed. Otherwise, w.l.o.g., assume
that ∆1 has imbalance larger than q2 ·(p2−1)/2. Select ∆′2 to
be an p1×(p2−1)/2 subarray of ∆2 that does not contain the
column with the maximal imbalance (among all the columns
in ∆2). Then, the imbalance of ∆′2 is smaller than q2 · (p2−
1)/2. Therefore, by applying SWAP on the arrays ∆1 and
∆′2, the imbalance of ∆1 can be made exactly q2 ·(p2−1)/2.
Then, the Procedure SWAP should be recursively applied to
each of ∆1 and ∆2. Additionally, the index of the column
excluded from ∆′2 should be appended to w′.

Higher Dimensional Codes

Using similar ideas, the proposed encoding and decoding
method can be further generalized to arrays of dimension
higher than two. We leave that discussion outside the scope
of this paper.

V. CONCLUSIONS

We have studied various constructions of simple codes
that translate arbitrary user words into codewords with a
prescribed imbalance q > 0.

We have shown that we can extend Knuth’s scheme that
produces balanced codewords, q = 0, to the “unbalanced”
case q > 0. Part of the input words can be converted
into a codeword of imbalance q by Knuth’s algorithm. The
other ’delinquent’ input words require a second encoding
step. We have presented a construction where delinquent
words are balanced by an imbalance of the prefix. In a
second construction, at most (q − q′)/2 symbols ‘−1’ in the
delinquent word are inverted, where q′ denotes the imbalance
of the user word. The information regarding the changes made
is carried by the prefix word. For q = 2, it suffices to invert
the tail bit of the delinquent word. For larger values of q, more

combinations of symbol inversions have to be defined which
have to be carried by the prefix costing more redundancy.
We have computed the redundancy of the new method for
various values of m and q. We conclude that the method is
either efficient for small q or very large m.

We also presented a new method which allows us to encode
an arbitrary block of data of length m bits into a block
of imbalance q = 3

2 log2m with only log2m + o(logm)
redundant bits. The time complexity of this method is O(m)
bit operations and O(m) increments/decrements of counters
of size O(log2m) bits. This method can be used in the
algorithm that encodes arbitrary binary input words of length
m > 22q/3 into words with imbalance q and redundancy
log2(m − 22q/3) + 2

3q + o(logm). Finally, we presented a
modification of the encoder proposed by Talyansky et al. [19]
that encodes an arbitrary binary data into a two-dimensional
n1 × n2 array, such that all its rows have imbalance q1 and
all its columns have imbalance q2, where n1q1 = n2q2. The
redundancy produced by this method is at most

≤ n1 · µ(n2) + n2 · log2 n1 +O(n2 log n1) ,

where µ(n2) is the corresponding redundancy of any method
for encoding one-dimensional arrays of length n2 and im-
balance q1. The total time complexity of this method is
O(n1n2 · log n2). The method can be further extended to
arrays in any dimension higher than two.
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