Constant Weight Codes:

An Approach Based on

Knuth’s Balancing Method

Vitaly Skachek !+

Coordinated Science Laboratory
University of Illinois, Urbana-Champaign
1308 W. Main Street
Urbana, IL 61801, USA
E-mail: vitalys@illinois.edu

Abstract—In this article, we study properties and algorithms
for constructing sets of ’constant weight’ codewords with bipolar
symbols, where the sum of the symbols is a constant g, ¢ # 0. We
show various code constructions that extend Knuth’s balancing
vector scheme, ¢ = 0, to the case where ¢ > 0. We compute the
redundancy of the new coding methods.

Index Terms—Balanced code, channel capacity, constrained
code, magnetic recording, optical recording.

I. INTRODUCTION
Let ¢ be an integer. A set C, which is a subset of

{w:(wl,wg,...,wn) c {_]_,_'_1}71 . sz:q} ’
=1

is called a constant weight code of length n. If ¢ = 0,
the code C is called a balanced code. A vector w € C is
called a code word. The weight of a word equals the number
of +1’s in it. An encoder for the code C is an invertible
mapping from the set of all vectors w € {—1,+1}™ onto
the vectors in C C {—1,+1}", for some integer m > 1. The
redundancy produced by the encoder is n — m. For practical
purposes, we are interested in encoders which are simple and
computationally efficient, and whose inverse, decoder, is also
computationally efficient.

Balanced codes have found application in cable transmis-
sion, optical and magnetic recording. A survey of properties
and methods for constructing balanced codes can be found
in [3]. A simple encoding technique for generating balanced
codewords, which is capable of handling (very) large blocks
was described by Knuth [5] in 1986.

For a general value of ¢, constant weight codes are useful
in a variety of applications such as fault-tolerant circuit
design and computing, pattern generation for circuit testing,
identification coding, and optical overlay networks [1], [2].
However, a simple encoding algorithm for a given imbalance

IThis project was supported by the National Research Foundation of
Singapore under the grant Theory and Practice of Coding and Cryptography,
award number: NRF-CRP2-2007-03.

2The work was done while Vitaly Skachek was with the School of Physical
and Mathematical Sciences, Nanyang Technological University, 21 Nanyang
Link, Singapore 637371.

Kees A. Schouhamer Immink !

Turing Machines Inc, Willemskade 15b-d
3016 DK Rotterdam, The Netherlands

School of Physical and Mathematical Sciences
Nanyang Technological University
21 Nanyang Link, Singapore 637371
E-mail: immink@turing-machines.com

g # 0 has not been known. The publications dealing with
constructions of unbalanced codes that the authors are aware
of are the geometric approach by Tian ef al. [1] and the
enumerative method by Schalkwijk [4] (see also [2]). Below,
we briefly discuss these two methods.

The time complexity of the method in [1] is ©(w?), where
(n + ¢q)/2 is the weight of the encoded word. If
w = O(n), the complexity of this method behaves as O(n?).
Moreover, the rate of the produced code is not optimal. The
authors of [1] mention that they lose about 1 — 3 bits per
each block in their construction, where the number of blocks
is proportional to w. Therefore, if ¢ is small, the rate loss
is proportional to m, and the produced redundancy is also
proportional to m.

By contrast, the redundancy, produced by the method
in [4], is essentially optimal. However, this method has
some drawbacks. First, it requires large registers. Second, it
suffers from error propagation. Third, this method has higher
complexity, at least (w?) operations over integers. If ¢ is
small, the complexity of this method is too high.

In this article we study various simple and efficient meth-
ods of generating bipolar codewords of imbalance ¢, ¢ # 0,
where mounting size of hardware and massive error propa-
gation can be avoided. Without loss of generality we assume
q > 0, since, for ¢ < 0, codewords can simply be obtained
by inverting all m symbols of a codeword with ¢ > 0.

w =

II. BACKGROUND

Let the word be w = (wy,ws,...,wy,), w; € {—1,+1},
and let ¢ be the imbalance of the user symbols defined by

g=> wi. )
i=1

The cardinality of the set of all g-balanced words of length
n, n and g even, can be approximated by [6]

n>>1.

X
3

n on 2
n+q nm 2
2 V2



Then the redundancy of a full set of g-balanced codewords

is
1 q>
3 log, n + o log, e 4+ 0.326, n >> 1. )
We notice that the redundancy consists of two terms, namely

the term %logzn + 0.326, the redundancy of the set of

2
balanced words, and the ¢-dependent term - log, e. Observe
that the g-dependent term decreases with increasing n (equiv-
alently, increasing m).

Knuth’s encoding scheme

Knuth published an algorithm for generating sets of bipolar
codewords with equal numbers of *41’s and *—1’s. In Knuth’s
method, an m-bit user word, m even, consisting of bipolar
symbols valued £1, is forwarded to the encoder. The encoder
inverts the first k& bits of the user word, where k is chosen
in such a way that the modified word has equal numbers of
’+1’s and *—1’s. Such an index k can always be found. This
k is represented by a balanced (prefix) word u of length p.
The p-bit prefix word followed by the modified m-bit user
word are both transmitted, so that the rate of the code is
m/(m + p). The receiver can easily undo the inversion of
the first k bits received by decoding the prefix. Both encoder
and decoder do not require large look-up tables, and Knuth’s
algorithm is therefore very attractive for constructing long
balanced codewords. Knuth showed that the redundancy p is
roughly equal to logy, m, for m >> 1 [5], [7]. Modifications
of the generic scheme are discussed in Knuth [5], Alon et
al. [8], Al-Bassam & Bose [9], Tallini, Capocelli & Bose [10],
and Weber & Immink [7].

We now try to answer the question how to construct a
constant weight code with codewords, where ¢ # 0.

III. METHODS FOR CONSTRUCTING CONSTANT WEIGHT
CODES

A. General setup

Let w = (wi,wa,...,Wy), w; € {—1,+1}, be an
arbitrary input word. We use the notation

d(w) =3 w;. 3)
=1

Let w') be the word w with its first & bits inverted, and let
o (w) stand for d(w®)). We also denote ¢’ = d(w).

By far the simplest method for generating g-balanced
codewords first generates a balanced codeword by using
Knuth’s method, and appends g ’+1’ symbols to the bal-
anced codeword. The method is attractive as it is simple
to implement, and as it avoids mass error propagation. The
redundancy of this scheme is p + ¢, where p ~ log, m is the
redundancy of Knuth’s base scheme. From (2) it follows that
this simple method is far from optimum since the redundancy
does not decrease with increasing m.

Alternative methods, to be discussed below, first use a
slightly modified version of Knuth’s algorithm for generating
g-balanced words. These method may fail to generate such

words and, in a second step, the ’failed” words are modified.
Information regarding the modification made is, as in Knuth’s
scheme, carried by the prefix.

Let us assume that we apply Knuth’s algorithm to w to
generate a g-balanced codeword, 0 < ¢ < m. That is, we
scan w and seek an index k, 0 < k£ < m, such that

k
op(w) = =2 w; +d(w) = q.

For ¢ = 0, such an index k can always be found. For ¢ # 0,
however, the encoder may fail to find such an index k. Since,
from the above, o¢(w) = d(w) = ¢/, (no symbols inverted)
and o, (w) = —d(w) = —¢' (all m symbols inverted), we
conclude that words w with ¢’ in the range —q < ¢’ < ¢
and o,(w) < ¢, 0 < k < m, cannot be translated into a
g-balanced codeword. User words, called delinquent words,
with a disparity within the range |¢'| < ¢ — 2 cannot be
encoded by Knuth’s algorithm, and some alternative has to
be found. In the sequel, we present various code constructions
that encode the delinquent words.

B. Unbalanced prefix

It is assumed that the index %k in Knuth’s algorithm is
represented by a p-bit balanced prefix u, p even. Delinquent
words can be balanced by the introduction of prefixes of
imbalance ¢, 2 < g, < p. If the imbalance of a delinquent
word, ¢’ < 0, we invert all symbols of that user word. Then
a delinquent word or its inverted version may be balanced by
choosing a prefix with imbalance ¢, = ¢ — |¢’|. An inversion
made can be signalled by a unique prefix, thus requiring two
distinct prefixes of imbalance ¢,, 2 < g, < ¢. For g, = g,
since ¢’ = 0, we only need one prefix, the all-one prefix. The
unbalanced prefix is an indication to the decoding side that
the user word w did not undergo changes. Thus, if ¢ < p
it is quite straightforward to generate a codeword having
imbalance ¢ using a simple modification of Knuth’s method.

Observe that this method is efficient (with respect to
produced redundancy) when p is at most approximately the
length of representation of the index k, i.e. when p =
O(logm).

C. Flipping tail patterns

1) Method decription: In an alternative way of encoding,
the encoder finds (¢ — ¢’)/2 *—1" symbols in the delinquent
w that are inverted into 41’ symbols. Note that, since
l¢'| < ¢ — 2, at most ¢ — 1 symbols —1" have to be
identified and inverted. The positional information of the
(¢ — ¢')/2 inverted symbols is conveyed to the receiver
by the prefix, which adds to the redundancy of the code.
The prefix conveys either information on the index k or
the information on the positions of the inverted symbols.
The index k£ € {0,...,m} requires m + 1 combinations of
the prefix, while the positional information of the inverted
symbols requires [V, combinations, totaling m + 1 + N,
prefix combinations. We identify a segment of a delinquent
w, where the (¢ — ¢’)/2 symbols *—1’ can be found, so that



N, and the redundancy of the new method can be calculated.
We exemplify the above with a simple example, where ¢ = 2.

Example: For ¢ = 2, we find that delinquent words w are
characterized by a) ¢’ = 0, b) w; = +1, and ¢) w,,, = —1.
From ¢ = 0, we conclude that only one —1’ has to be
located and inverted. As the tail symbol of all delinquent
words is w,, = —1, we conclude that by inverting the tail
symbol, we can translate any input word w into a codeword
with imbalance ¢ = 2. Clearly, we require m + 2 different
prefixes to uniquely identify the modification made at the
transmitter’s site.

Theorem 1: Let w be a delinquent word, ¢ > 2 and q is
even, then there are at least (¢—¢’)/2 symbols valued *—1’ in
the £ = (3¢—¢')/2—2 tail bits (Wy—p41, Wm—r4+2," " , Wy).
Proof: In case the Knuth encoder fails, we have o (w) < ¢
and o (w) is even, and thus

k
ok(w)=-2) wi+q <qg-2, 0<k<m, (4
i=1

or

2 ) wi<qtqd -2 0<k<m. 5)
i=k+1

Let £ be the number of ‘+1’s in the last £ positions of w
and ¢~ be the number of *—1’s in these ¢ positions. We have
that

=1 (6)
From (5) (with k = m — £), we also have
Ut -2 <qg+q —2. (7)
We conclude from (6) and (7) that
0 >0/2—(g+d)/4+1/2.
By the substitution ¢ = (3¢ — ¢’)/2 — 2, we obtain
- =a-q)2-1/2.

Since ¢ and ¢’ are both even, and ¢~ is integer, we have
0= > (q—¢q')/2, as required. n

Since for a delinquent word we have |¢'| > g — 2, it follows
from Theorem 1 that in the ¢ — 2 + ¢ tail bits there are at
least ¢ symbols valued *—1’. We therefore conclude that only
a limited number of inversion combinations needs to be taken
into account.

Then, in case Knuth’s algorithm fails to produce an unbal-
anced codeword, we can take care of that ’failed’ word w by
inverting (¢ — ¢’)/2 symbols *—1’ in the (3¢ — ¢’)/2 — 2 tail
bits of w. In the worst case, ¢ — 1 —1’ symbols have to be
inverted into a 41’ in 2¢ — 3 tail symbols.

In the next section, we compute the number of modifica-
tions, N, that have to be made to delinquent words in order
to generate a g-balanced codeword.

TABLE I
SET OF SHORTEST TAIL STRINGS FOR q = 4.

q =2 ¢ =0 ¢ =-2
-1 —1-1 “1-1-1
—1+1 —1+1-1 —1+1-1-1
—1+1+1 —1-1+1 —1-1+1-1
—14141-1 | —14141-1-1
—1+1-1+41 | —141—1+1-1

TABLE II

NUMBER OF PREFIXES, N,,, VERSUS g.

q Np Ny
2 1 1
4 13 12
6 131 111
8 1429 1183
10 | 16795 | 13362

2) Redundancy computation: The computation of N, is
directly related to the computation of the redundancy of the
new method. Note that [V, is independent of the word length
m. The number, N,, of prefixes required to identify the (¢ —
q’)/2 symbol inversions made in the ¢ = (3¢ — ¢’)/2 — 2 tail
bits is upper bounded by

—92 7
q 3q2q —_92
Np < Z 9—q’ ’
q'=—q+2 2
q’ even

or after a change of variable, we obtain

qg—1 .
29 -2 —
N, < E ( 1 l).

—1
i=1 q

The counting of IV, can be accomplished by setting up a
forest of ¢ — 1 binary trees for all possible values of ¢’
€ {—q+2,—q+4,...,q—2}. Starting from the root with w,,,
we generate all possible valid tail strings {wp,—k, - .., Wmn},
where a string is valid if 222’;m_k w; < qg+¢q¢ —2. We
terminate a string {...,w;,—2, Wy—1,W,,} when the string
contains (¢ —q’)/2 symbols *—1°. Theorem 1 guarantees that
the length of a string is at most 2¢ — 3. N, is computed
by summing all strings of all ¢ — 1 trees. For ¢ = 4, the
13 shortest tail strings are given in Table I, where the less
significant symbol of the strings is associated with the tail
symbol w,, of a codeword and the tree root. Appending the
above /-bit tail strings to m — ¢ leading *+1’ symbols yields
the m-bit vectors, required to ‘“unbalance” the delinquent
words. Thus, from the above 13 m-bit vectors plus Knuth’s
m + 1 balancing vectors we can select at least one vector
such that the inner product of the selected and an input
word equals ¢ = 4 for any even value of m > 4. We have
computed NV, for various values of q. Table II shows results of
our computations. An alternative computation of N, is based
on a finite-state machine model of the running sum . wg.
The number of sequences, whose running sum »  wy, remains
within given limits can be computed by a model introduced



by Chien [11]. The sum sequence
k
zk:Zwi, k=m—{¢+1,...,m
i=1

remains within the bounds Ny = (¢’ — ¢)/2+ 1 and Ny =
q'+¢ (there are at most £ consecutive tail symbols *+1°, where
¢ = (3¢ —q')/2 — 2, see Theorem 1). The number of values
that 2z, can take within the (tail) interval k = m—{¢+1,...,m
is at most Ny — N7 +1 = 2¢ — 2. The stream wy, at any instant
k=m—/{+1,...,m can be seen as the output of a Moore-
type finite-state machine with N = 2¢q — 2 states, whose
N X N connection matrix, Dy, is defined by Dy (i,j) = 1
if a transition is allowable and Dy (¢, ) = 0 otherwise [11].
We have

Dn(i+1,4) = Dy(i,i+1) =1,
DN(Zaj) = 07
The (4, 7)-th entry of the m-th power of Dy is denoted by

D71 (i, 7). After a manipulation, we find that the number N,
is given by

ifi=1,2,...,N —1,
otherwise.

2q—3

Ny= > Db, ,[l+1,2q—3],
l=q—1

®)

where we count the number of distinct sequences ending in
state 2¢ — 3 of length ¢ — 2414, 4 = 1,...,q9 — 1 having ¢
’—1’ symbols. Note that there are at least ¢+ symbols valued
’—1’ in the ¢ — 2 + ¢ tail bits.

We can improve the redundancy by a small modification of
the tree search: in case ¢’ < 0, we invert many symbols in a
large tail. This costs a lot of bits of redundancy. Thus, in the
worst case, ¢ = —q + 2, we invert ¢ — 1 symbols in 2q — 3
tail symbols. If we assume that we invert all bits of that user
word, then the imbalance ¢’ becomes —¢q’. The worst case
¢ = —q + 2 becomes ¢’ = ¢ — 2, where only one symbol
has to be inverted in ¢ — 1 tail bits. For this inverted word,
we search for the smallest tail string that contains (¢ —¢’)/2
>—1" symbols.

In a systematic way, we set up a forest of ¢— 1 binary trees
as described above, where we follow a valid path until either
we tallied (¢ — ¢’)/2 >—1" symbols (as described above in
the first method) or we tallied (¢ — ¢’)/2 41’ symbols. The
m-bit balancing vectors are obtained as follows. The ¢-bit tail
strings with (¢ — ¢’)/2 *+1’ symbols are appended to m — ¢
’+1” symbols, while the ¢-bit tail strings with (¢—¢')/2 -1
symbols are appended to m — £ >—1’ symbols. We tally the
leaves of all trees, which yields N/, the number of tail strings
found. Results of computations are collected in Table II.

We conclude that N, is rapidly mounting with increasing
imbalance ¢. As the binary logarithm of the sum m + N,
determines the redundancy of the code, the method is either
efficient for small ¢ or very large m.

D. Different operational modes

In order to encode an arbitrary block of ‘+1’s of length
m into a block of imbalance ¢, the methods discussed in

Sections III-B and III-C produce ~ ¢ redundant bits in
the worst case. Below, we introduce an alternative encoding
method which encodes an arbitrary block of data of length
m into a block with imbalance ¢ = %log2 m bits with only
log, m + o(logm) redundant bits.

This method can also be adopted for some other parameter
combinations. For example, for the input word w of length
m and desired imbalance g, such that m > 229/3, we can
use a combined decoder that applies Knuth’s algorithm to
the first m — 229/3 input bits, and the proposed algorithm to
the remaining 22%/3 bits. The resulting encoder outputs words
with imbalance ¢ and redundancy log, m + %q + o(logm).

Recall that if ¢’ < 0, we first invert the word. Then, there
are five different modes of operation: modes 1, 2, 3, 4 and
5. Mode 5 contains four different submodes, denoted by 5-
1 — 5-4. The choice of mode depends on the value of ¢’
and the structure of the input word w. The selected mode
and a possible inversion (or not) are denoted by a special
prefix. There are eight different modes, for each mode there
are also two possibilities for inversion. These 16 possibilities
are represented by balanced prefixes with six bits.

In some operational modes we make use of a balanced
suffix of length log, m + o(logm). In Modes 1 and 5-1 this
suffix denotes the number of bits flips. In Modes 2 and 5-
2 the suffix carries additional weight, thus making the total
imbalance of the word equal ¢. In Modes 3 and 5-3, the suffix
serves as an index of an entry in the input word. Modes 4
and 5-4 do not use suffix. Instead, in these modes, the values
of the last log, m — 1 bits in the tail of the word are encoded
by a location of a special string of length 2log, m, which
is inserted into the input word. The tail is then discarded.
Therefore, in these two modes, the resulting length of the
word increases by log, m + o(logm) bits as well.

Recall that ¢’ = )" | w;. Assume without loss of general-
ity, ¢ > 0, otherwise flip all the bits, and mark this in the pre-
fix of the encoded word. Denote by p = Z?;mflogz ma2 Wi
a sum of the last log, m — 1 symbols in w.

Mode 1. ¢’ > 3logym: In this case, we just apply the
Knuth’s algorithm. We append a balanced suffix of log, m +
o(logm) bits at the tail of the block, to denote the actual
number of bit flips.

Mode 2. %log2 m<q < %log2 m: In this case, we just
append the suffix of the total imbalance ¢, = ¢—¢' < log, m.

Mode 3. 0 < ¢’ < %1og2 m and the word w contains a
subsequence “+1+1+1 ... +17 of length > log, m: Then,
the sum of all bits in w, except for this subsequence, is
less than f% log, m. By flipping all the bits in w, except
for the above subsequence and one '—1’ immediately after
it, we make the total imbalance > llogzm + logyam =
%log2 m. Then, we sequentially flip the bits in the subse-
quence “+1+1+1 ... 417, from the first to the penultimate,
to make the total imbalance equal ¢. It is straight-forward
to see that this imbalance can always be achieved. We need
log, m+o(log m) bits to encode the index of the first flipped



bit in this subsequence by the balanced suffix. Observe, that
from knowing that index, the flipped region can be uniquely
determined, and so the whole operation is invertible.

Mode 4. 0 < ¢ < %log2 m, the word w contains no
subsequence “+1+1+41 ... +1" of length > log, m and
q" > p: Denote w = (wy,wa, ..., Wnm_log, m+1)- We insert
the following string between two consecutive symbols in w:

14141 +1 . 41 —1—1—1...—1 +1,

S1 S2

51 + s2 = 2logym — 2, s1 > logym and so > 1. Denote
the sum of the elements in this string by 7. Under the given
constraints, 7 can take any even value in [2,2log, m — 4].

We aim to select the values of s; and sy such that after
the insertion the total imbalance of the resulting word (i.e.,
w with the inserted sequence) becomes %log2 m. Note, that
after the insertion of the string, the imbalance becomes ¢’ —
1+ n. Since ¢’ > p, we obtain that

3
Oﬁq/—ﬂ<§10g2m_17

and so there exists a string as above such that ¢ — p+1n =
3
3 logy m.

Next, we decide on the location of this insertion. The
location of the insertion i € {0,1,2,...,m — log, m + 1},
represents the encoding of the last log, m — 1 bits that were
removed from w. These bits can take
m
2

210g2 m—1 _

different values. Since 3+ < m —logy m + 1 (for all m > 4),
we have enough different locations to encode the values of
these bits.

There is no other substring “+1+41+1 ... +1” of length
> logym in w, and so the inserted string can be uniquely
identified. Therefore, all steps are invertible.

Mode 5. 0 < ¢ < %log2 m, the word w contains no
subsequence “+14+1+1 ... +1" of length > log, m and
¢’ < p: Consider the word @ = w(™~1082m+1) Gince

m—log, m+1

>

i=1

wi:q/_,u<07

we obtain that d(w) = (u—¢)+pu> (¢ —p)+u=4¢ >0
and also d(w) = (u—q’)+p > p. Thus, the resulting w falls
under one of the cases considered in Modes 1-4. We apply
the corresponding encoding method in Modes 1-4 to w (we
refer to these cases as Modes 5-1 — 5-4, respectively).

As we can see, all encoding modes are invertible. There-
fore, the whole encoding algorithm is invertible.

Time complexity: It can be verified that each mode requires
up to O(m) bit operations and O(m) incerments/decrements
of counters of size O(logm) bits.

IV. CONCLUSIONS

We have studied various constructions of simple codes that
generate codewords with a given imbalance gq.

We have shown that we can extend Knuth’s balancing
vector scheme, ¢ = 0, to the case where ¢ > 0. Part of the
input words can be converted into a codeword of imbalance
q by the original Knuth algorithm. The other ’delinquent’
input words require a dedicated encoding step. We have
presented a construction where delinquent words are balanced
by an imbalance of the prefix. In a second construction, at
most (¢ — ¢')/2 >—1" symbols of the delinquent word are
inverted, where ¢’ denotes the imbalance of the user word.
The information regarding the changes made is carried by the
prefix word. For ¢ = 2, it suffices to invert the tail bit of the
delinquent word. For larger values of ¢, more combinations of
symbol inversions have to be defined which have to be carried
by the prefix costing more redundancy. We have computed
the redundancy of the new method for various values of m
and q. We conclude that the method is either efficient for
small ¢ or very large m.

Finally, we presented a new method which allows to encode
an arbitrary block of data of length m bits into a block
of imbalance ¢ = 2log, m with only log, m + o(logm)
redundant bits. The time complexity of this method is O(m)
bit operations and O(m) increments/decrements of counters
of size O(log, m) bits. This method can be used in the
algorithm that encodes arbitrary binary input words of length
m > 224/3 into words with imbalance ¢ and redundancy
logy m + 2q + o(logm).

REFERENCES

[1] C. Tian, V.A. Vaishampayan, and N. Sloane, A Coding Algorithm for
Constant Weight Vectors: A Geometric Approach Based on Dissec-
tions’, IEEE Trans. Inform. Theory, vol. IT-55, no. 3, pp. 1051-1060,
March 2009.

[2] Y.M. Chee, C.J. Colbourn, and A.C.H. Ling, ’Optimal Memoryless
Encoding for Low Power Off-Chip Data Buses’, Proceedings of the
2006 IEEE/ACM international Conference on Computer-Aided Design,
San Jose, California, November 05 - 09, 2006.

[3] K.A.S. Immink, Codes for Mass Data Storage Systems, Second Edi-
tion, ISBN 90-74249-27-2, Shannon Foundation Publishers, Eindhoven,
Netherlands, 2004.

[4] JPM. Schalkwijk, An Algorithm for Source Coding’, IEEE Trans.
Inform. Theory, 1T-18, pp. 395-399, 1972.

[5] D.E. Knuth, ’Efficient Balanced Codes’, IEEE Trans. Inform. Theory,
vol. IT-32, no. 1, pp. 51-53, Jan. 1986.

[6] P. Stanica, ’Good Lower and Upper Bounds on Binomial Coefficients’,
Journal of Inequalities in Pure and Applied Mathematics, vol. 2, Art.
30, 2001.

[71 K.A.S. Immink and J. Weber, ’Very Efficient Balancing of Codewords’,
IEEE Journal on Selected Areas of Communications, vol. 28, pp. 188-
192, 2010.

[8] N. Alon, E.E. Bergmann, D. Coppersmith, and A.M. Odlyzko, 'Bal-
ancing Sets of Vectors’, IEEE Trans. Inform. Theory, vol. IT-34, no. 1,
pp. 128-130, Jan. 1988.

[9] S. Al-Bassam and B. Bose, ’On Balanced Codes’, IEEE Trans. Inform.

Theory, vol. IT-36, no. 2, pp. 406-408, March 1990.

L.G. Tallini, R.M. Capocelli, and B. Bose, 'Design of some New

Balanced Codes’, IEEE Trans. Inform. Theory, vol. IT-42, pp. 790-802,

May 1996.

T.M. Chien, *Upper Bound on the Efficiency of Dc-constrained Codes’,

Bell Syst. Tech. J., vol. 49, pp. 2267-2287, Nov. 1970.

[10]

[11]



