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Abstract—A problem of index coding with side information was
first considered by Y. Birk and T. Kol (IEEE INFOCOM, 1998). In
the present work, a generalization of index coding scheme, where
transmitted symbols are subject to errors, is studied. Error-
correcting methods for such a scheme, and their parameters, are
investigated. In particular, the following question is discussed:
given the side information hypergraph of index coding scheme
and the maximal number of erroneous symbols δ, what is the
shortest length of a linear index code, such that every receiver
is able to recover the required information? This question turns
out to be a generalization of the problem of finding a shortest-
length error-correcting code with a prescribed error-correcting
capability in the classical coding theory.

The Singleton bound and two other bounds, referred to as
the α-bound and the κ-bound, for the optimal length of a
linear error-correcting index code (ECIC) are established. For
large alphabets, a construction based on concatenation of an
optimal index code with an MDS classical code, is shown to
attain the Singleton bound. For smaller alphabets, however, this
construction may not be optimal. A random construction is also
analyzed. It yields another inexplicit bound on the length of an
optimal linear ECIC. Finally, the decoding of linear ECIC’s is
discussed. The syndrome decoding is shown to output the exact
message if the weight of the error vector is less or equal to the
error-correcting capability of the corresponding ECIC.

I. INTRODUCTION

A. Background

The problem of Index Coding with Side Information (ICSI)
was introduced by Birk and Kol [1]. During the transmission,
each client might miss a certain part of the data, due to
intermittent reception, limited storage capacity or any other
reasons. Via a slow backward channel, the clients let the server
know which messages they already have in their possession,
and which messages they are interested to receive. The server
has to find a way to deliver to each client all the messages he
requested, yet spending a minimum number of transmissions.
As it was shown in [1], the server can significantly reduce the
number of transmissions by coding the messages.

Possible applications of index coding include communica-
tions scenarios, in which a satellite or a server broadcasts a set
of messages to a set clients, such as daily newspaper delivery
or video-on-demand. Index coding with side information can
also be used in opportunistic wireless networks [2].

1This work was done while the author was with the Division of Mathe-
matical Sciences, School of Physical and Mathematical Sciences, Nanyang
Technological University, 21 Nanyang Link, Singapore 637371.

The ICSI problem has been a subject of several recent
studies [3]–[8]. This problem can be viewed as a special case
of the Network Coding (NC) problem [9], [10]. In particular,
as it was shown in [7], every instance of the NC problem can
be reduced to an instance of the ICSI problem.

B. Our contribution

In this work, we generalize the ICSI problem towards a
setup with error correction. We extend some known results to
a case where any receiver can correct up to a certain number
of errors. The problem of designing such error-correcting
index codes (ECIC’s) naturally generalizes the problem of
constructing classical error-correcting codes. We establish an
upper bound (the κ-bound) and a lower bound (the α-bound)
on the shortest length of a linear ECIC, which is able to correct
any error pattern of size up to δ. We also derive an analog
of the Singleton bound, and show that this bound is tight.
We consider random ECIC’s and obtain an upper bound on
their length. Finally, we discuss the decoding of linear ECIC’s.
We show that the syndrome decoding succeeds, provided that
the number of errors does not exceed the error-correcting
capability of the code.

The problem of error correction for NC was studied in
several previous works. However, these results are not directly
applicable to the ICSI problem.

For detailed proofs, we refer the reader to the full version
of this paper [11].

II. PRELIMINARIES

Let Fq be the finite field of q elements, where q is a power
of prime, and F∗q = Fq\{0}. Let [n] = {1, 2, . . . , n}. For the
vectors u,v ∈ Fnq , we use d(u,v) to denote the the Hamming
distance between u and v. If u ∈ Fnq and M ⊆ Fnq is a set
of vectors, then this notation can be extended to

d(u,M) = min
v∈M

d(u,v) .

Given q, k, and d, let Nq[k, d] denote the length of the shortest
linear code over Fq which has dimension k and minimum
distance d. The support of a vector u ∈ Fnq is defined by
supp(u)

4
= {i ∈ [n] : ui 6= 0}. The Hamming weight of u is

defined by wt(u)
4
= |supp(u)|. Suppose E ⊆ [n]. We write

uC E whenever supp(u) ⊆ E.



We use ei = (0, . . . , 0, 1, 0, . . . , 0) ∈ Fnq to denote the
unit vector, which has a one at the ith position, and zeros
elsewhere. For a vector y = (y1, y2, . . . , yn) and a subset
B = {i1, i2, . . . , ib} of [n], where i1 < i2 < · · · < ib, let yB
denote the vector (yi1 , yi2 , . . . , yib).

For an n × N matrix L, let Li denote its ith row. For a
set E ⊆ [n], let LE denote the |E| ×N matrix obtained from
L by deleting all the rows of L which are not indexed by
the elements of E. For a set of vectors M , we use notation
span(M) to denote the linear space spanned by the vectors
in M . We also use notation colspan(L) for the linear space
spanned by the columns of the matrix L.

Let G = (V, E) be a graph with a vertex set V and an edge
set E . A directed graph G is called symmetric if

(u, v) ∈ E ⇔ (v, u) ∈ E .

The independence number of an undirected graph G is de-
noted by α(G). There is a natural correspondence between
undirected graphs and directed symmetric graphs. By using
this correspondence, the definition of independence number is
naturally extended to directed symmetric graphs.

III. ERROR-CORRECTING INDEX CODING WITH SIDE
INFORMATION

Index Coding with Side Information problem considers
the following communications scenario. There is a unique
sender (or source) S, who has a vector of messages x =
(x1, x2, . . . , xn) in his possession. There are also m receivers
R1, R2, . . . , Rm, receiving information from S via a broadcast
channel. For each i ∈ [m], Ri has side information, i.e. Ri
owns a subset of messages {xj}j∈Xi , where Xi ⊆ [n]. Each
Ri, i ∈ [m], is interested in receiving the message xf(i) (we
say that Ri requires xf(i)), where the mapping f : [m]→ [n]
satisfies f(i) /∈ Xi for all i ∈ [m]. Hereafter, we use the
notation X = (X1,X2, . . . ,Xm). An instance of the ICSI
problem is given by a quadruple (m,n,X , f). An instance
of the ICSI problem can also be conveniently described by
the following directed hypergraph [8].

Definition 3.1: Let (m,n,X , f) be an instance of the ICSI
problem. The corresponding side information (directed) hyper-
graph H = H(m,n,X , f) is defined by the vertex set V = [n]
and the edge set EH, where

EH = {(f(i),Xi) : i ∈ [n]} .

We often refer to (m,n,X , f) as an instance of the ICSI
problem described by the hypergraph H.

Each side information hypergraph H = (V, EH) can be
associated with the directed graph GH = (V, E) in the
following way. For each directed edge (f(i),Xi) ∈ EH there
will be |Xi| directed edges (f(i), v) ∈ E , for v ∈ Xi. When
m = n and f(i) = i for all i ∈ [m], the graph GH is, in fact,
the side information graph, defined in [3].

Due to noise, the symbols received by Ri, i ∈ [m], may be
subject to errors. Assume that S broadcasts a vector y ∈ FNq .

Let εi ∈ FNq be the error affecting the information received
by Ri, i ∈ [m]. Then Ri actually receives the vector yi =
y + εi ∈ FNq , instead of y.

Definition 3.2: Consider an instance of the ICSI problem
described by H = H(m,n,X , f). A δ-error-correcting index
code ((δ,H)-ECIC) over Fq for this instance is an encoding
function

E : Fnq → FNq ,

such that for each receiver Ri, i ∈ [m], there exists a decoding
function

Di : FNq × F|Xi|q → Fq ,

satisfying

∀x, εi ∈ Fnq , wt(εi) 6 δ : Di(E(x) + εi,xXi) = xf(i) .

If δ = 0, we refer to such E as a non-error-correcting index
code, or just H-IC. The parameter N is called the length of
the index code. In the scheme corresponding to the code E, S
broadcasts a vector E(x) of length N over Fq .

Definition 3.3: A linear index code is an index code, for
which the encoding function E is a linear transformation over
Fq . Such a code can be described as

∀x ∈ Fnq : E(x) = xL ,

where L is an n×N matrix over Fq . The matrix L is called the
matrix corresponding to the index code E, while E is referred
to as the linear index code based on L.

Definition 3.4: An optimal linear (δ,H)-ECIC over Fq is
a linear (δ,H)-ECIC over Fq of the smallest possible length
Nq(H, δ).

Hereafter, we assume that X = (Xi)i∈[m] is known to S.
We also assume that the code E is known to each receiver Ri,
i ∈ [m].

Definition 3.5: Suppose H = H(m,n,X , f) corresponds
to an instance of the ICSI problem. Then the min-rank of H
over Fq is defined as

κq(H)
4
= min{rankFq ({vi + ef(i)}i∈[m]) :

vi ∈ Fnq , vi C Xi} .

Observe that κq(H) generalizes the min-rank over Fq of the
side information graph, which was defined in [3]. More specif-
ically, when m = n and f(i) = i for all i ∈ [m], GH becomes
the side information graph, and κq(H) = min-rankq(GH). The
min-rank was shown in [3], [4] to be the smallest number of
transmissions in a linear index code.

Lemma 3.1: ( [3], [12]) Consider an instance of the ICSI
problem described by H = H(m,n,X , f) .

1) The matrix L corresponds to a linear H-IC over Fq if
and only if for each i ∈ [m] there exists vi ∈ Fnq such
that vi C Xi and vi + ef(i) ∈ colspan(L).



2) The smallest possible length of a linear H-IC over Fq is
κq(H).

IV. BASIC PROPERTIES

We define the set of vectors

I(q,H) 4
=
{
z ∈ Fnq : ∃i ∈ [m] s.t. zXi = 0, zf(i) 6= 0

}
.

For all i ∈ [m], we also define Yi
4
= [n]\

(
{f(i)}∪Xi

)
. Then

the collection of supports of all vectors in I(q,H) is given by

J (H) 4
=
⋃
i∈[m]

{
{f(i)} ∪ Yi : Yi ⊆ Yi

}
. (1)

Lemma 4.1: The matrix L corresponds to a (δ,H)-ECIC
over Fq if and only if

wt (zL) ≥ 2δ + 1 for all z ∈ I(q,H) . (2)

Equivalently, L corresponds to a (δ,H)-ECIC over Fq if and
only if

wt

(∑
i∈K

ziLi

)
≥ 2δ + 1, (3)

for all K ∈ J (H) and for all choices of zi ∈ F∗q , i ∈ K.
Proof: For each x ∈ Fnq , we define

B(x, δ) = {y ∈ FNq : y = xL+ ε, ε ∈ FNq , wt(ε) ≤ δ} ,

the set of all vectors resulting from at most δ errors in the
transmitted vector associated with the information vector x.
Then the receiver Ri can recover xf(i) correctly if and only
if

B(x, δ) ∩B(x′, δ) = ∅,

for every pair x,x′ ∈ Fnq satisfying:

xXi = x
′
Xi and xf(i) 6= x′f(i) .

(Observe that Ri is interested only in the bit xf(i), not in the
whole vector x.)

Therefore, L corresponds to a (δ,H)-ECIC if and only if
the following condition is satisfied: for all i ∈ [m] and for all
x,x′ ∈ Fnq such that xXi = x

′
Xi and xf(i) 6= x′f(i), it holds

∀ε, ε′ ∈ FNq , wt(ε) 6 δ, wt(ε′) 6 δ :

xL+ ε 6= x′L+ ε′ . (4)

Denote z = x′ − x. Then, the condition in (4) can be
reformulated as follows: for all i ∈ [n] and for all z ∈ Fnq
such that zXi = 0 and zf(i) 6= 0, it holds

∀ε, ε′ ∈ FNq , wt(ε) 6 δ, wt(ε′) 6 δ : zL 6= ε− ε′ . (5)

The equivalent condition is that for all z ∈ I(q,H),

wt(zL) > 2δ + 1 .

Inequality (3) follows from this condition in a straight-forward
manner.

Corollary 4.1: For all i ∈ [m], let

M i
4
= span ({Lj : j ∈ Yi}) .

Then, the matrix L corresponds to a (δ,H)-ECIC over Fq if
and only if

∀i ∈ [m] : d(Lf(i),M i) > 2δ + 1 . (6)

Example 4.1: Let q = 2, m = n = 3, and f(i) = i for
i ∈ [3]. Suppose X1 = {2, 3}, X2 = {1, 3}, and X3 = {1, 2}.
Let

L =

1 1 1 0
1 1 0 1
1 0 1 1

 .

Note that L generates a [4, 3, 1]2 code, which has minimum
distance one. However, the index code based on L can still
correct one error. Indeed, let H = H(3, 3,X , f), we have

I(2,H) = {100, 010, 001}.

Since each row of L has weight at least three, it follows
that wt(zL) ≥ 3 for all z ∈ I(2,H). By Lemma 4.1, L
corresponds to a (1,H)-ECIC over F2.

Example 4.2: Assume that m = n and f(i) = i for all
i ∈ [m]. Furthermore, suppose that Xi = ∅ for all i ∈ [m]
(i.e. there is no side information available to the receivers).
Let H = H(m,n,X , f). Then, I(q,H) = Fnq \{0}. Hence, by
Lemma 4.1, the n × N matrix L corresponding to a (δ,H)-
ECIC over Fq (for some integer δ > 0) is a generating matrix
of an [N,n,> 2δ + 1]q linear code. Thus, the problem of
designing an ECIC is reduced to the problem of constructing
a classical linear error-correcting code.

V. THE α-BOUND AND THE κ-BOUND

Let (m,n,X , f) be an instance of the ICSI problem, and
let H be the corresponding side information hypergraph. Next,
we introduce the following definitions for the hypergraph H.

Definition 5.1: A subset H of [n] is called a generalized
independent set in H if every nonempty subset K of H
belongs to J (H).

Definition 5.2: A generalized independent set of the largest
size in H is called a maximum generalized independent set.
The size of a maximum generalized independent set in H is
called the generalized independence number, and denoted by
α(H).

When m = n and f(i) = i for all i ∈ [n], the generalized
independence number of H is equal to the maximum size of
an acyclic induced subgraph of GH, which was introduced
in [3]. In particular, when GH is symmetric, α(H) is the
independence number of GH. We omit the proof.

Theorem 5.1 (α-bound): The length of an optimal linear
(δ,H)-ECIC over Fq satisfies

Nq(H, δ) > Nq[α(H), 2δ + 1] .



Proof: Consider an n×N matrix L, which corresponds
to a (δ,H)-ECIC. Let H = {i1, i2, . . . , iα(H)} be a maximum
generalized independent set in H. Then, every subset K ⊆ H
satisfies K ∈ J (H). Therefore,

wt

(∑
i∈K

ziLi

)
≥ 2δ + 1

for all K ⊆ H , K 6= ∅, and for all choices of zi ∈ F∗q , i ∈ K.
Hence, the α(H) rows of L, namely Li1 ,Li2 , . . . ,Liα(H)

,
form a generator matrix of an [N,α(H), 2δ + 1]q code.
Therefore,

N ≥ Nq[α(H), 2δ + 1] .

The following proposition is based on the fact that concate-
nation of a δ-error-correcting code with an optimal (non-error-
correcting) H-IC yields a (δ,H)-ECIC.

Proposition 5.2 (κ-bound): The length of an optimal
(δ,H)-ECIC over Fq satisfies

Nq(H, δ) ≤ Nq[κq(H), 2δ + 1] .

The proof of this proposition is omitted due to lack of space.
Corollary 5.1: The length of an optimal linear (δ,H)-ECIC

over Fq satisfies

Nq[α(H), 2δ + 1] ≤ Nq(H, δ) ≤ Nq[κq(H), 2δ + 1] .

Example 5.1: Let q = 2, m = n = 5, δ = 2, and f(i) = i
for all i ∈ [m]. Assume

X1 = {2, 5} , X2 = {1, 3} , X3 = {2, 4} ,
X4 = {3, 5} , X5 = {1, 4} .

Let H = H(5, 5,X , f). The side information graph GH of
this instance is a pentagon. It is easy to verify that α(H) =
α(G) = 2. It follows from Theorem 9 in [4] that κ2(H) =
min-rank2(GH) = 3. Thus, from [13] we have

N2[2, 5] = 8 and N2[3, 5] = 10 .

Due to Corollary 5.1, we have

8 ≤ N2(H, 2) ≤ 10.

Using a computer search, we obtain that N2(H, 2) = 9, and
the corresponding optimal scheme is based on

L =


1 1 1 1 1 0 0 0 0
0 1 0 1 1 0 1 1 0
1 1 0 0 0 1 1 1 0
0 1 1 0 0 1 0 1 1
1 0 1 0 1 0 0 1 1

 .

It is technical to verify that by Lemma 4.1, L corresponds to
(2,H)-ECIC. The length of this ECIC lies strictly between the
α-bound and the κ-bound.

Remark 5.1: Example 5.1 illustrates that over small al-
phabets, the concatenation of an optimal linear (non-error-
correcting) index code and an optimal linear error-correcting
code may fail to produce an optimal linear ECIC.

VI. THE SINGLETON BOUND

Theorem 6.1 (Singleton bound): The length of an optimal
linear (δ,H)-ECIC over Fq satisfies

Nq(H, δ) ≥ κq(H) + 2δ .

Proof: Let L be the n×Nq(H, δ) matrix corresponding
to some optimal (δ,H)-ECIC. Let L′ be the matrix obtained
by deleting any 2δ columns from L.

By Lemma 4.1, L satisfies for all z ∈ I(q,H),

wt(zL) > 2δ + 1 .

We deduce that the rows of L′ also satisfy that for all z ∈
I(q,H),

wt(zL′) > 1 .

By Lemma 4.1, L′ corresponds to a linear H-IC. Therefore,
by Lemma 3.1, part 2, L′ has at least κq(H) columns. We
deduce that

Nq(H, δ)− 2δ ≥ κq(H) ,

which concludes the proof.

The corollary below shows that for sufficiently large al-
phabets, a concatenation of a classical MDS error-correcting
code with an optimal (non-error-correcting) index code yields
an optimal linear ECIC.

Corollary 6.1 (MDS error-correcting index code): For q ≥
κq(H) + 2δ − 1,

Nq(H, δ) = κq(H) + 2δ . (7)

Proof: Follows from Theorem 6.1 and Proposition 5.2.

Remark 6.1: There exist hypergraph H, such that GH is the
(symmetric) odd cycle of length n, for which the α-bound is
at least as good as the Singleton bound.

VII. RANDOM CODES

Theorem 7.1: Let H = H(m,n,X , f) describe an instance
of the ICSI problem. Then there exists a (δ,H)-ECIC over Fq
of length N if ∑

i∈[m]

qn−|Xi|−1 <
qN

Vq(N, 2δ)
, (8)

where

Vq(N, 2δ) =

2δ∑
`=0

(
N

`

)
(q − 1)`

is the volume of the q-ary sphere in FNq .
Idea of proof: We construct a random n × N matrix L over
Fq , row by row. Each row is selected independently of other
rows, uniformly over FNq . The result is obtained by bounding
from above the probability of the event⋃
i∈[m]

Ei , where Ei
4
=
{
d(Lf(i),M i) < 2δ + 1

}
,

and by making this probability less than 1.



Remark 7.1: The bound in Theorem 7.1 implies a bound
on κq(H), which is tight for some H. Indeed, fix δ = 0. Take
m = n = 2` + 1 (` ≥ 2), and f(i) = i for all i ∈ [n]. Let
X1 = [n]\{1, 2, n} and Xn = [n]\{1, n − 1, n}. For 2 ≤ i ≤
n− 1, let Xi = [n]\{i− 1, i, i+1}. Take H = H(n, n,X , f).
Then GH is the complement of the (symmetric directed) odd
cycle of length n. We have |Xi| = 2` − 2 for all i ∈ [n].
Then (8) becomes

N > 2 + logq(2`+ 1) .

If q > 2`+1 then we obtain N > 3. Observe that in this case
κq(H) = min-rankq(GH) = 3 (see [8, Claim A.1]), and thus
the bound is tight.

VIII. SYNDROME DECODING

Consider the (δ,H)-ECIC based on a matrix L. Suppose
that the receiver Ri, i ∈ [m], receives the vector

yi = xL+ εi , (9)

where xL is the codeword transmitted by S, and εi is the
error pattern affecting this codeword.

In the classical coding theory, the transmitted vector c, the
received vector y, and the error pattern e are related by y =
c+ e. For index coding, however, this is no longer the case.
The following theorem shows that, in order to recover the
message xf(i) from yi using (9), it is sufficient to find just
one vector from a set of possible error patterns. This set is
defined as follows:

Li(εi) = {εi + z : z ∈ span({Lj}j∈Yi)} .

We henceforth refer to the set Li(εi) as the set of relevant
error patterns.

Lemma 8.1: Assume that the receiver Ri receives yi.
1) If Ri knows the message xf(i) then it is able to determine

the set Li(εi).
2) If Ri knows some vector ε̂ ∈ Li(εi) then it is able to

determine xf(i).

We now describe a syndrome decoding algorithm for linear
error-correcting index codes. We have

yi − xXiLXi − εi ∈ span
(
{Lf(i)} ∪ {Lj}j∈Yi

)
.

Let Ci = span({Lf(i)}∪ {Lj}j∈Yi), and let H(i) be a parity
check matrix of Ci. We obtain that

H(i)εTi =H(i)(yi − xXiLXi)T .

Let βi be a column vector defined by

βi =H
(i)(yi − xXiLXi)T .

Observe that each Ri is capable of determining βi. This leads
us to the formulation of the decoding procedure for Ri in
Figure 1.

Theorem 8.2: Let yi = xL + εi be the vector received
by Ri, and let wt(εi) 6 δ. Assume that the procedure in
Figure 1 is applied to (yi,xXi ,L). Then, its output satisfies
x̂f(i) = xf(i).

• Input: yi, xXi , L.

• Step 1: Compute the syndrome

βi =H
(i)(yi − xXiLXi)T .

• Step 2: Find the lowest Hamming weight solution ε̂ of
the system

H(i)ε̂T = βi .

• Step 3: Given that x̂Xi = xXi , solve the system for x̂f(i):

yi = x̂L+ ε̂.

• Output: x̂f(i).

Fig. 1: Syndrome decoding procedure.

Remark 8.1: It is not impossible that ε̂ 6= εi. However,
if wt(εi) ≤ δ, it can be shown that ε̂ ∈ Li(εi). Hence, by
Lemma 8.1, we have x̂f(i) = xf(i).
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