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Abstract

Low-density parity-check (LDPC) codes were introduced in 1962, but were almost forgotten.
The introduction of turbo-codes in 1993 was a real breakthrough in communication theory
and practice, due to their practical effectiveness. Subsequently, the connections between
LDPC and turbo codes were considered, and it was shown that the latter can be described
in the framework of LDPC codes. In recent years, low-density parity-check codes have been
a subject of much experimentation and analysis. It was shown that, in practice, LDPC codes
perform extremely well.

The most common approach to the analysis of LDPC codes is based on probabilistic
methods, which consider so-called ‘average LDPC codes’. This approach led to remark-
able results on the performance of LDPC codes. However, there is still a gap between our
understanding of LDPC code ensembles and characteristics of specific LDPC codes.

One promising approach for constructing specific LDPC codes is based on using expander
graphs. Some of these codes (called expander codes) allow both linear-time encoding and
decoding. Recently, it was shown that such codes can attain capacity of a variety of channels,
while the error probability decreases exponentially with the code length. One of the main
characteristics of any code family is a trade-off between its rate and its relative minimum
distance: it was recently shown for the binary expander codes that this trade-off surpasses
the Zyablov bound, which was used as a benchmark for evaluating the parameters of codes
for many years.

In this thesis, we present improvements on the known bounds on the parameters of
expander codes. We (slightly) improve the lower bound on the minimum distance of expander
codes. We show that these codes can be viewed as a concatenation of a nearly-MDS expander
code with an appropriate inner code. We suggest that GMD-decoding can be efficiently used
for these codes. Thus, those nearly-MDS codes admit a linear-time encoding and decoding.
Their alphabet size is smaller than the alphabet size of similar known codes.

By employing this approach, we are able to present a new decoding algorithm for expander
codes together with a novel analysis. We show that our algorithm can correct (slightly) more
errors than any known decoding algorithm for expander codes. Moreover, the decoding time
of our algorithm has only polynomial dependence on the degree of the underlying graph.
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Further, we investigate the decoding error probability of codes as a function of their block
length. We show that the existence of codes with polynomially small decoding error prob-
ability implies the existence of codes with exponentially small decoding error probability.
Specifically, we assume that there exists a family of codes of length N and rate R = (1−ε)C
(where C is the capacity of a binary symmetric channel), whose decoding probability de-
creases inverse polynomially in N . Then, we show that if the decoding probability decreases
sufficiently fast, but still only inverse polynomially fast in N , then there exists another such
family of codes whose decoding error probability decreases exponentially fast in N . More-
over, if the decoding time complexity of the assumed family of codes is polynomial in N and
1/ε, then the decoding time complexity of the presented family is linear in N and polynomial
in 1/ε. We compare these codes to several known expander code families and show that the
latter families cannot be tuned to having all aforementioned properties.

We construct so-called generalized expander codes, which are different from all known
expander codes. We show that these generalized expander codes are (asymptotically) at least
as good as the best known expander codes. We present a linear-time decoding algorithm for
generalized expander codes.

We also consider expander codes defined over non-bipartite graphs and present a reduc-
tion from these codes to codes defined over bipartite graphs. This reduction leads to an
efficient decoder for the former code family.

We also investigate expander codes that contain ‘weak’ constituent codes, i.e. constituent
codes with a rather small minimum distance. We find lower and upper bounds on the mini-
mum distance of an expander code having codes with minimum distance 2 as the constituent
codes. In that case, we show that the overall code cannot be asymptotically good. Then,
we derive some new lower bounds on the minimum distance of expander codes. Finally, we
derive some sufficient conditions on the parameters of the constituent codes, such that the
overall expander code family becomes asymptotically good.
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Abbreviations and Notations

LDPC Low-Density Parity-Check
IRA Irregular Repeat Accumulative
MDS Maximum Distance Separable
RS Reed-Solomon
GRS Generalized Reed-Solomon
BEC Binary Erasure Channel
BSC Binary Symmetric Channel
MP Message Passing
BP Belief Propagation
GF(q) Galois Field of size q

⌊x⌋ Largest integer less than or equal to x.
⌈x⌉ Smallest integer greater than or equal to x.
x ≈ y x is approximately equal to y.
A ∪ B Union of the sets A and B.
A ∩ B Intersection of the sets A and B.
A\B Set difference of the sets A and B.
|A| Number of elements in the set A.
a ∈ A Element a is contained in the set A.
B ⊆ A Set B is a subset of the set A or equals the set A.
S1 ⇒ S2 Statement S1 implies S2.
S1 ⇔ S2 Statement S1 implies S2 and S2 implies S1.
XT Transpose of the matrix X.
w(c) Relative Hamming weight of the word c.
wb(c) Relative binary Hamming weight of the word c.
d(x,y) Hamming distance between the words x and y.
d2(x,y) Binary Hamming distance between the words x and y.

3



E(x) Expected value of the random variable x.
Prob(x) Probability of the event x.
Prob(y|x) Conditional probability of y given x.
Probe(C) Decoding error probability for the code C

with respect to a prescribed decoder.
Pe(n) Average decoding error probability of a random linear code of length n

with respect to the maximum-likelihood decoder.
C Capacity of a channel.
Cq(p) Capacity of the q-ary symmetric channel

with crossover probability p.
Hq(p) q-ary entropy function.
α Relative size of expanding set in an expander graph.
ζ Expansion factor of an expander graph.
g(G) Girth of the graph G.
AG Adjacency matrix of the graph G.
λ Second largest eigenvalue of the matrix AG (where G is regular).
λ∗ Second largest absolute value of eigenvalue

of the matrix AG (where G is regular).
∆ Degree of a vertex in a regular expander graph.
γG Ratio between λ and ∆ for the matrix AG (where G is regular).
γ∗G Ratio between λ∗ and ∆ for the matrix AG (where G is regular).
E Encoder.
D Decoder.
E(r) Random coding exponent.
M Message alphabet of a message-passing decoder.
O Output alphabet of a channel.
E(v) Set of edges incident with the vertex v.
GS Graph induced from the graph G by the vertex set S.
ES Set of edges induced by the vertex set S.
N (v) Set of neighbors of the vertex v.
deg(v) Degree of the vertex v in a graph.
degS(v) Degree of vertex v in the subgraph induced by the vertex set S.
(x)E(v) Sub-word of x indexed by E(v).
C = (G, C) Low-complexity code with an underlying graph G

and a constituent code C.
C [R, N ] Code C of rate R and length N .
δZ(R) The Zyablov bound for binary codes of rate R.
δGV (R) Gilbert-Varshamov bound for binary codes of rate R.
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Chapter 1

Introduction

1.1 Background

Low-density parity-check (in short, LDPC) codes were first introduced by Gallager in 1962
[33]. In his pioneering work, Gallager introduced iterative decoding algorithms for LDPC
codes. He showed that for all code rates below a certain bound (which is lower than the
Shannon capacity), the decoding error probability for these algorithms decays exponentially
with the square root of the code length. However, Gallager’s work was almost forgotten for
several decades.

The introduction of turbo codes in 1993 by Berrou, Glavieux, and Thitimajshima [12],
was a real breakthrough in communication theory and practice, due to their practical effec-
tiveness. The technique of so-called iterative decoding was shown empirically to perform at
rates closer to the Shannon capacity of the channel than any known algebraic decoder could
do. However, as of yet, there is no full analysis of the performance of turbo codes.

Later on, the connection between LDPC codes and turbo codes was considered. It was
shown that the latter can be described in the framework of low-density parity-check codes
(see for example, [57]). Moreover, the turbo decoding algorithm [49] can be understood as
a belief propagation algorithm [63]. Hence, belief propagation analysis that is performed on
LDPC codes may be applicable to turbo codes as well.

In the last few years, LDPC codes have been the subject of much experimentation and
analysis. In the present research, we further study these codes. Specifically, in this thesis,
we present some results on the achievable parameters of such codes. We improve further on
the existing LDPC code constructions and algorithms, in particular, by constructing new
codes with better parameters than the existing ones, and by developing new, more efficient,
encoding-decoding algorithms for new and existing codes.

The contents of this thesis is as follows. In Chapter 1, we present the definitions that
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will be used throughout this document and survey the key results that have been published
on LDPC codes. In Chapters 2 through 6 we present the results of our research. Finally, in
Chapter 7, we summarize our results and discuss related open problems.

1.2 Definitions

1.2.1 Basic definitions

A finite sequence of elements of an alphabet Σ is called a word over Σ. A set C of words of
length n over the alphabet Σ is called a code over Σ, and n is called the length of the code
C.

Consider two words x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) in Σn. The Hamming
distance between x and y is defined as the number of pairs of symbols (xi, yi), 1 ≤ i ≤ n,
such that xi 6= yi, and is denoted by d(x,y). The minimum distance of a code C is defined
as

d = min
x,y∈C, x6=y

d(x,y).

The relative minimum distance of C is defined as δ = d/n, where n is the code length.

Denote by xT the transpose of vector x. A code C over a field F is said to be a linear
[n, k, d] code if there exists matrix H with n columns and rank n−k such that for all x ∈ Fn

HxT = 0 ⇔ x ∈ C,

and the minimum distance of the code C is d. The matrix H is called a parity-check matrix
of the code C. The value k is called the dimension of the code C, and the ratio R = k/n is
called the rate of the code C.

1.2.2 Channels and Shannon capacity

A discrete memoryless communication channel is defined by the following three ingredients:

1. Input alphabet {a1, a2, . . . , aI}.

2. Output alphabet {b1, b2, · · · , bJ}.

3. Conditional probability assignment Prob(bj |ai) for each pair of symbols (ai, bj), 1 ≤
i ≤ I, 1 ≤ j ≤ J .

6



The memoryless condition induces the following conditional probability measure for every
input word (x1, x2, . . . , xn) and output word (y1, y2, . . . , yn) (of the same length):

P
{
y1, y2, . . . , yn

∣∣x1, x2, . . . , xn

}
=

n∏

i=1

Prob(yi|xi).

An important special case of discrete memoryless communication channels is the q-ary
symmetric channel, for which I = J = q and

∀i ∈ 1, · · · , I, ∀j ∈ 1, · · · , J, i 6= j : Prob(bj |ai) =
p

q − 1
,

where p is a constant called the crossover probability of the channel and it does not depend
on ai or bj . In particular, when q = 2, the channel is called the binary symmetric channel
(in short, BSC).

Given the q-ary symmetric channel with crossover probability p < 1 − 1
q
, the Shannon

capacity of this channel is given by

Cq(p) = 1− Hq(p),

where Hq : [0, 1]→ [0, 1] is the q-ary entropy function

Hq(x) = x logq(q − 1)− x logq x− (1− x) logq(1− x),

with Hq(0) = 0 and Hq(1) = logq(q − 1). One of the main results in information theory is
the Shannon Coding Theorem [78], which states that for any design rate R < Cq(p) there
exists an infinite family of codes {Ci}∞i=0 satisfying the following conditions:

• The length of Ci approaches infinity as i→∞.

• The rate Ri of Ci satisfies R < Ri < Cq(p) for all i.

• The decoding error probability under maximum-likelihood decoding of the codes in the
family decays exponentially with the code length.

In the sequel, we say that the code family attains the Shannon capacity if it satisfies these
three conditions. Shannon’s proof of the coding theorem is non-constructive. The problem of
finding explicit code constructions that attain the Shannon capacity was studied extensively
over the years.
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1.2.3 LDPC codes

Low-density parity-check (LDPC) codes over GF(2) are commonly described in terms of
bipartite graphs. Let G = (V, EG) be a bipartite undirected graph with a vertex set V =
Vm ∪ Vc such that Vm ∩ Vc = ∅ and an edge set EG such that every edge in EG has one
endpoint in Vm and one endpoint in Vc. In the following, we refer to the vertices in Vm and
in Vc as message and check vertices, respectively. The graph G with |Vm| = n and |Vc| = r
produces a linear code of block length n and dimension k ≥ n− r in the following way. The
entries of a codeword are indexed by the message vertices. A vector x = (x1, ..., xn) is a
codeword if and only if HxT = 0, where H is the r × n incidence matrix of the graph G:
the rows of H are indexed by the check vertices and the columns of H are indexed by the
message vertices. For each i = 1, . . . , n and j = 1, . . . , r the entry (H)i,j equals 1 if there
is an edge between message vertex i and check vertex j in the bipartite graph G; otherwise
(H)i,j equals 0. In other words, x is a codeword if and only if for each check vertex v, the
sum of entries in x that are indexed by the message vertices adjacent to v is zero. In the
common terminology of linear codes, the matrix H is a parity-check matrix of the LDPC
code.

It follows from the above definitions that the degree of the message (check) vertex i is
equal to the number of non-zero entries in the i’th column (row) of the matrix H . For
LDPC codes the number of non-zero entries in each column (row) is typically bounded by
a small constant. This explains the origin of the name low-density parity-check codes. The
definition of LDPC codes can be extended toward codes over a general field F = GF(q).

For regular LDPC codes the degrees of all message vertices are equal, and the degrees of
all check vertices are equal. This means that the parity-check matrix H contains the same
number of ones in each row and the same number of ones in each column. By contrast,
irregular LDPC codes are codes that are based on graphs where the degree of the vertices
on each side of the graph can vary.

1.2.4 Low-complexity codes

The following construction is due to Tanner [82]. Let G = (V,E) be a ∆-regular undirected
graph with a vertex set V , and an edge set E of size N = 1

2
|V |∆. For every vertex v ∈ V ,

denote by E(v) the set of edges incident with v. We assume an ordering on the edges of E(v)
for every v ∈ V , and let F = GF(q). For a word x = (xe)e∈E (whose entries are indexed by
E) in FN , denote by (x)E(v) the sub-word of x that is indexed by E(v).

Fix C to be a linear [∆, k=r∆, d] code over F. The code C = (G, C) is defined in [82] to
be the following linear [N,K,D] code over F:

C =
{
c ∈ F

N : (c)E(v) ∈ C for every v ∈ V
}
.
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It was shown in [82] by Tanner that K/N ≥ 2r−1. The code C is called a low-complexity
code and the graph G is called a Tanner graph.

1.2.5 Expander codes

Consider a ∆-regular graph G = (V, EG) with a vertex set V and an edge set EG. For every
vertex v ∈ V, denote by N (v) the set of vertices adjacent to v. We say that a subset S ⊆ V

expands by a factor of ζ , 0 < ζ ≤ 1, if

∣∣∣∣∣
⋃

v∈S

N (v)

∣∣∣∣∣ ≥ ζ∆ · |S|.

We say that the graph G is an (α, ζ)-expander if every subset of at most α|V| vertices expands
by a factor of ζ .

Consider a graph G where each vertex has degree ∆.

Denote by AG the adjacency matrix of G; namely, AG is a |V|× |V| real symmetric matrix
whose rows and columns are indexed by the set V, and for every u, v ∈ V, the entry in AG

that is indexed by (u, v) is given by

(AG)u,v =

{
1 if {u, v} ∈ EG

0 otherwise
.

It is easy to see that ∆ is the largest eigenvalue of AG. Let λ∗ be the second largest absolute
value of any eigenvalue of AG. It was shown in [1] that lower ratios λ∗

∆
imply greater values

ζ of expansion.

An expander graph for which the relation

λ∗ ≤ 2
√

∆− 1 (1.1)

holds is called a Ramanujan graph. Ramanujan graphs have essentially the smallest possible
value of λ∗ (given ∆) [1]. It is known that there exist infinite families of such graphs with
the number of vertices approaching infinity for fixed values of vertex degree ∆ [53], [62]. We
denote by γG the ratio between the second largest eigenvalue of AG and ∆ (this ratio is less
than 1 when G is connected and is nonnegative when |V| > 1; see [22, Propositions 1.1.2
and 1.1.4]).

In the remaining part of this section we will discuss bipartite graphs. Take the bipartite
graph G = (V, EG), with a vertex set V = Vm ∪ Vc, Vm ∩ Vc 6= ∅, and an edge set EG. We
consider the expansion of sets of message vertices contained within the set Vm only. The
bipartite graph G will be called an unbalanced bipartite (α, ζ)-expander if every subset of Vm

of at most α|Vm| vertices, α < 1, expands by a factor of at least ζ , 0 < ζ < 1.
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Consider an unbalanced bipartite expander where every vertex in Vm has the same degree
∆m and every vertex in Vc has the same degree ∆. We assume an ordering on the vertices of
N (v) for every v ∈ Vc. Let C be a linear error-correcting code of length ∆ over F = GF(q).
The expander code C = 〈G, C〉 is the code of length |Vm| over F whose codewords are all
words x = (x1, x2, . . . , x|Vm|) over GF(q) such that, for every v ∈ Vc, the sub-word of x that
is indexed by N (v) is a codeword of C.

Suppose now that ∆m = 2. We define a new graph G = (V,E) with a vertex set V and
an edge set E as follows:

• V = Vc

• ∀v, v′ ∈ Vc, v 6= v′ : {v, v′} ∈ E ⇔ N (v) ∩ N (v′) 6= ∅ . (1.2)

Note that the produced graph G is a Tanner graph and the code C is the low-complexity
code (G, C). The entries of a codeword are now indexed by edges of the graph G rather than
by vertices of G.

1.2.6 MDS codes and asymptotically good codes

A given linear [n, k, d] code C over the field GF(q) is said to satisfy the Singleton bound if
n = k + d − 1. The code that satisfies this condition is called maximum distance separable
(MDS). There are several known MDS constructions. For example, the repetition code of
length n over GF(q) that consists of all vectors of length n with all-the-same entries from
GF(q) is one example of MDS code. Reed-Solomon (in short, RS) codes and generalized
Reed-Solomon (in short, GRS) codes [59, Chapter 10] are non-trivial examples of such codes.

A family of codes {Ci}∞i=0, where each Ci is a linear [ni, ki, di] code, is said to be asymp-
totically good if it satisfies the following conditions:

• The length ni of Ci approaches infinity as i→∞.

• limi→∞
di

ni
= δ > 0

• limi→∞
ki

ni
= R > 0

1.2.7 Concatenated codes and Justesen codes

In this section, we revisit the definition of concatenated codes. The following ingredients
will be used:

• A linear [nin, kin=Rinnin, δinnin] code Cin over F = GF(q) (inner code).
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• A linear [n,RΦn, δΦn] code CΦ over Φ = Fkin (outer code).

• A linear one-to-one mapping E0 : Φ→ Cin.

The respective concatenated code Ccont of length n · nin over F is defined as

Ccont =
{

(c1|c2| · · · |cn) ∈ F
n·nin : ci = E0(Ξi) ,

for i ∈ 1, 2, · · · , n, and (Ξ1Ξ2 · · ·Ξn) ∈ CΦ

}
.

The rate of Ccont is known to be Rcont = Rin · RΦ. The relative minimum distance of Ccont,
δ, is at least δ ≥ δin · δΦ.

LetDin : Fnin → Cin andDΦ : Φn → CΦ be decoders for the codes Cin and CΦ, respectively.
A simple decoder Dcont for the code Ccont is presented in Figure 1.1. This decoder is able to
correct any error pattern of less then 1

4
δinδΦ errors over F.

Input: received word y = (y1 y2 · · · yn·nin
) in Fn·nin.

For i = 1, 2, · · · , n do ui ← E−1
0

(
Din

(
(yj+(i−1)·nin

)nin
j=1

))
.

Let (z1z2 · · · zn)← DΦ ((u1u2 · · ·un)).

Output: (E0(z1)|E0(z2)| · · · |E0(zn)).

Figure 1.1: Decoder Dcont for the concatenated code Ccont.

Concatenated codes were invented by Forney [30], [31]. In his works, Forney proposed a
polynomial-time decoding technique called generalized minimum distance decoder (in short,
GMD decoder). The GMD decoder DGMD is presented in Figure 1.2.

When the output of the decoder Din is suspected to be unreliable, the decoder DGMD uses
a special symbol ‘?’ (erasure) instead of the actual output of Din. The value ht is used as
a varying threshold of reliability for Din. The decoder DGMD makes use of the error-erasure
decoder D′

Φ : (Φ ∪ {‘?’})n → CΦ (for the code CΦ), which corrects any pattern of ϑ errors
and ρ erasures, given that ϑ + ρ/2 < δΦn/2. The decoder DGMD therein is able to correct
any error pattern of less then 1

2
δinδΦ errors over F (see [30] for details).

For any given design rate R < Cq(p), Forney constructed a series of concatenated codes
{Ci}∞i=1, where each Ci has length Ni and rate Ri, such that

• The rate Ri satisfies R ≤ Ri.

11



Input: received word y = (y1 y2 · · · yn·nin
) in Fn·nin.

For i ∈ 1, 2, · · · , n do {
Let xi ← Din

(
(yj+(i−1)·nin

)nin
j=1

)
.

Let ui ← E−1
0 (xi) .

}

For ht = 1, 2, · · · , δinnin do {
For i ∈ 1, 2, · · · , n let wi ←

{
ui if d(xi, (yj+(i−1)·nin

)nin
j=1) < ht

? otherwise
.

Let (z1z2 · · · zn)← D′
Φ ((w1w2 · · ·wn)) .

Let a← (E0(z1)|E0(z2)| · · · |E0(zn)) .
If d(a,y) < 1

2
δinnin · δΦn then output a and halt .

}

Output: ‘failure to decode’.

Figure 1.2: Decoder DGMD for the concatenated code Ccont.

• The decoding error probability of the code Ci under the GMD decoder is bounded
from above by

Probe(Ci) ≤ max
R≤r≤Cq(p)

e−NiE(r)(1−R
r

), (1.3)

where E(r) is the so-called random coding exponent defined in [35] as

E(r) = lim
n→∞

sup
− ln Pe(n)

n
, (1.4)

and Pe(n) is the average decoding error probability of a random linear code of length
n and rate r under the maximum-likelihood decoder, as defined in [35, p. 121].

In Forney’s work, the inner code Cin was taken to be a block code of length nin and rate
Rin that has the smallest decoding error probability. The outer code Cout was taken to be
a GRS code. Forney showed that this concatenated code construction attains the Shannon
capacity. However, the decoding in Forney’s work has super-linear time.

Let z 7→ H−1
q (z) be the inverse of the q-ary entropy function x 7→ Hq(x) over the interval

[0, 1−1/q]. A modified version of concatenated codes was proposed by Justesen in [41]. The
proposed codes were proved to satisfy the inequality

δ ≥ max
max{R,1/2}≤r≤1

(
1− R

r

)
H−1

q (1− r).
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Therefore, for a certain interval of rates, Justesen codes attain the Zyablov bound

δ ≥ max
R≤r≤1

(
1− R

r

)
H−1

q (1− r). (1.5)

1.2.8 Message-passing decoders

In several works on LPDC codes, the analysis of decoding is done under the message-passing
(in short, MP) algorithms. The first message-passing algorithms for decoding of LDPC codes
were proposed by Gallager in [34]. Some of the message-passing algorithms, including one of
the algorithms proposed by Gallager, are so-called belief-propagation (BP) algorithms [66].
Belief-propagation algorithms were extensively used and investigated by researchers in the
field of artificial intelligence. The turbo decoding [12] was shown in [63] to be another
instance of belief-propagation algorithms.

We next describe the structure of a message-passing decoder for LDPC codes.

• Suppose that G is a bipartite graph, consisting of message vertices {vi} and check
vertices {cj}.
• The decoder has a message alphabet M. This alphabet is used for sending messages

between the vertices of G, i.e. each message is one of the symbols ofM.

• Denote by O the output alphabet of the channel. Assume O ⊆M.

• At the beginning of the decoding, each message vertex vi has an associated received
value from the alphabet O. The message vertex sends this value to each of its check
neighbors.

• Each check vertex receives messages along all its incident edges. It processes the
received set of values and sends back to each of its neighboring message vertices values
from the alphabetM.

• In a similar manner, each message vertex receives messages along all its incident edges,
processes the received values and sends back to each of its neighbors values from the
alphabetM.

• The decoding process proceeds in iterations. In each iteration, values are transmitted
iteratively back and forth between the two parts of the graph G.

1.3 Related work

In this section, we summarize the known results on LDPC codes. In Section 1.3.1, we consider
works that analyze properties of LDPC codes decoded by message-passing algorithms. In
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Section 1.3.2, we go over the constructions based on expander graphs. In Sections 1.3.3, we
survey the results obtained using purely algebraic tools. Finally, some additional works are
discussed in Section 1.3.4.

1.3.1 Message-passing algorithms

In Gallager’s 1963 paper [34], there were two MP decoding algorithms presented for decoding
of LDPC codes: one is a hard-decoding algorithm and the other is a soft-decoding one. An
analysis of convergence of the algorithms was presented, and bounds on the decoding error
probability were derived. The connection between the convergence of the algorithms and the
non-existence of short cycles in the bipartite graph representing the code was considered.

The problem that limited Gallager’s analysis in [34], was the existence of short cycles in
the graph G. Gallager took into account in his analysis the fact that the shortest cycles in
the graph G have length logarithmic in the number of message vertices. However, it was
found by simulations that even graphs with short cycles produce LDPC codes that perform
well in practice. While the analysis of Gallager took care of a specific graph, Urbanke and
Richardson in [69] has overcome the problem of short cycles by taking into consideration
a random bipartite graph. They showed that the average behavior of a message-passing
decoding algorithm on a random bipartite graph converges to the cycle-free case.

The critical rate of LDPC codes, with respect to the MP decoding algorithm, was studied
by Richardson and Urbanke in [69]. It was shown that for almost all LDPC codes in a
suitably defined ensemble, transmissions at rates below the critical rate (that depends on
the channel and is smaller than the Shannon capacity) can be obtained with MP error
decoding probability that approaches zero exponentially fast in the length of the code. On
the other hand, for transmissions at rates above the critical rate, the MP error decoding
probability stays bounded away from zero. An effective algorithm for determining this rate
for the binary symmetric channel with a message-passing decoding algorithm was proposed
in [69].

In [70], very low-density parity-check codes were designed with rates extremely close to
the Shannon capacity. In particular, they clearly outperform turbo codes. However, those
codes were found by a computer search and not as part of a general construction.

1.3.2 Expander constructions

The notion of low-complexity codes was introduced by Tanner in [82]. In that paper, the
author suggested a modified construction for LDPC codes, based on a bipartite graph with
each message vertex connected to exactly two check vertices (see definition (1.2)). Tan-
ner derived a lower bound on the rate and the minimum distance of the presented codes.
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Encoding and decoding method for the proposed codes were also presented.

Expander graphs have attracted many investigators over the years. There are known ex-
plicit constructions of Ramanujan expander graphs due to Lubotsky, Philips, and Sarnak [22,
Chapter 4], [53] and Margulis [62]. In particular, Lubotsky et al. have shown in [53] that
for any prime p0 ≡ 1 (mod 4) there exists an infinite family of bipartite (p0 + 1)-regular Ra-
manujan graphs with the number of vertices approaching infinity. Independently, Margulis
presented in [62] similar result.

The explicit constructions of Ramanujan graphs were used by Alon et al. in [2] as
building blocks to obtain new polynomial-time constructions of asymptotically good codes
in the low-rate range.

Using expander graphs, a family of explicit expander-based LDPC codes was presented
in [79] by Sipser and Spielman. These codes have linear-time sequential decoding (yet not
encoding) algorithms and logarithmic-time parallel decoding algorithms that use a linear
number of processors. The codes are asymptotically good, i.e. both the code dimension and
the number of correctable errors grow linearly with the code length.

Another family of explicit low-density error-correcting codes was presented in [81] by
Spielman. By combining ideas from [2] and [79], Spielman provided in [81] an asymptotically
good construction where both the decoding and encoding time complexities were linear in the
code length. However, these codes exist at rates lower than the rates of their counterparts
in [79].

The expander graph approach was explored by Burshtein and Miller in [20] for LDPC
codes. The authors considered codes represented by an expander graph. They proved that
both the hard-decoding and the soft-decoding message-passing algorithms, when applied to
these codes, can correct a number of errors that is linear in the code length. The implication
of this result is that when the block length is sufficiently large, once a message-passing
algorithm has corrected a sufficiently large fraction of the errors, it will eventually correct all
errors. This result was combined with known results [69] on the ability of message-passing
algorithms to reduce the number of errors to an arbitrarily small fraction for relatively high
transmission rates. Consequently, the following two-step decoding strategy will correct all
errors:

• In the first step, all but a small portion of the errors are corrected by the message-
passing algorithms as proposed in [69] .

• In the second step, the rest of the errors are corrected by message-passing algorithms,
following the result in [20].

The results of Burshtein and Miller hold for various message-passing algorithms, including
Gallager’s original hard-decision and soft-decision decoding algorithms.

15



Tanner’s low-complexity codes were further studied by Etzion et al. in [25]. For low
complexity codes with cycle-free graphs the authors showed decoding algorithm with time
complexity quadratic in the code length. They also proved that cycle-free graphs produce
rather poor codes.

While the linear-time decoder of the Sipser-Spielman construction was guaranteed to
correct a number of errors that is a positive fraction of the code length, that fraction was
significantly smaller than what one could attain by bounded-distance decoding—namely,
decoding up to half the minimum distance of the code. The guaranteed fraction of linear-
time correctable errors was substantially improved by Zémor in [84]. In his analysis, Zémor
considered the special (yet abundant) case of the Sipser-Spielman construction where the
underlying Ramanujan graph is bipartite, and presented a linear-time iterative decoder where
the correctable fraction was 1/4 of the relative minimum distance of the code. We will
describe the work of Zémor in more detail in Section 1.4.

In a series of works [8], [9], [10], Barg and Zémor generalize the construction from [84].
The results in these papers are essential for our discussion, and thus we will discuss them in
more detail in Section 1.4.

Guruswami and Indyk in [36] and [37] improved the results of Zémor [84] and presented
a linear-time encodable and decodable expander-based codes that can correct a number of
errors equal to about half the minimum distance of their code. They presented codes of low
rate R with relative minimum distance of about 1/2− 2 4

√
R.

In [38], Guruswami and Indyk used Zémor’s construction as a building block and com-
bined it with methods from [2], [4], and [5] to suggest a code construction with the following
three properties:

(P1) The construction is nearly-MDS: it yields for every design rate R ∈ (0, 1] and suffi-
ciently small ǫ > 0 an infinite family of codes of rate at least R over an alphabet of
size

2O((log(1/ǫ))/(Rǫ4)) , (1.6)

and the relative minimum distance of the codes is greater than

1−R− ǫ .

(P2) The construction is linear-time encodable, and the time complexity per symbol is
Poly(1/ǫ) (i.e., this complexity grows polynomially with 1/ǫ).

(P3) The construction has a linear-time decoder which is essentially a bounded-distance
decoder: the correctable number of errors is at least a fraction (1−R−ǫ)/2 of the code
length. The time complexity per symbol of the decoder is also Poly(1/ǫ).

In fact, the decoder described by Guruswami and Indyk in [38] is more general in that it can
handle a combination of errors and erasures. Thus, by using their codes as an outer code
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in a concatenated construction, one obtains a linear-time encodable code that attains the
Zyablov bound [23, p. 1949], with a linear-time bounded-distance decoder. Alternatively,
such a concatenated construction approaches the capacity of any given memoryless channel:
if the inner code is taken to have the smallest decoding error exponent, then the overall
decoding error probability behaves like Forney’s error exponent [30], [31] (the time complexity
of searching for the inner code, in turn, depends on ǫ, yet not on the overall length of the
concatenated code).

A family of LDPC codes constructed from Ramanujan graphs was considered by Rosen-
thal and Vontobel in [76]. The authors presented simulation results on the performance of
the constructed codes.

1.3.3 Algebraic approach

Over the decades, algebraic code constructions were widely investigated by researchers. In
several recent works, the algebraic approach was also applied to low-density parity-check
codes. The reader can refer, for example, to [14], [16], [17], [64].

Algebraic MDS codes over (GF(2))k−1, k prime, were constructed by Blaum et al. [14].
Simple encoding and decoding algorithms were presented for these codes. The authors
showed that when the symbols of GF(2k−1) in any codeword are concatenated to form a
binary word, the produced binary code, which is linear over GF(2), has the LDPC property.
Lower and upper bounds on the bit density of the parity-check matrix of the code were
derived.

Another LDPC code construction over (GF(q))k, where k is a positive integer, was pre-
sented by Blaum and Roth in [17]. A bound on the lowest possible density of a parity-check
matrix (over GF(q)) of an MDS code (over (GF(q))k) was derived. Codes that achieve the
mentioned bound were presented for certain redundancy values together with encoding and
decoding algorithms.

Other algebraic constructions were presented, for example, in [27] and [64]. In [15], some
algebraic LDPC codes were compared through simulation of the message-passing decoding
algorithm.

1.3.4 Other results

Over the past years, LDPC codes were often constructed using regular bipartite graphs. It
was shown by Luby et al. in [55] that at a given rate, codes based on irregular graphs may
provide lower decoding error probability compared to codes based on regular graphs. The
authors obtained some condition for testing whether any given degree sequence minimizes
the decoding error probability under the MP decoding. This condition can be formulated in
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the form of a linear-programming problem. By numerically solving that linear-programming
problem, the authors of [55] were able to select degree sequences that characterize codes with
low decoding error probability. However, no constructive method for finding such graphs was
given.

In [71], an encoding method for codes that are based on sparse matrices was presented.
For randomly picked code graph, the encoding complexity of this method is linear in the
code length n with probability approaching 1 as n→∞.

Kou, Lin and Fossorier proposed a construction of LDPC codes based on finite geome-
tries [48]. Although the proposed construction was simple, it was designed for specific pa-
rameters and thus it was not good asymptotically. The proposed codes have a linear-time
encoding algorithm. The performance of several codes from this family was studied by
simulation and was found to be close to the Shannon capacity.

Litsyn and Shevelev studied in [51], [52] the distance distribution of several random
ensembles of irregular and regular LDPC codes, respectively. For regular codes, the compared
ensembles include an ensemble defined by random parity-check matrices having given column
and row sum, ensembles defined by random matrices with given column sums or given
row sums, and an ensemble defined by random bipartite graphs. For irregular codes, the
considered ensemble is defined by a certain set of random parity-check matrices.

1.4 Introducing expander codes

1.4.1 Expander codes of Sipser and Spielman

Construction

The expander codes described herein were the first asymptotically-good codes that allowed a
linear-time (in their length) decoding algorithm, which is able to correct a constant fraction
of errors. The construction of these codes is due to Sipser and Spielman [79], and it can be
described in terms of graphs as shown below.

Let G = (V,E) be a ∆-regular undirected graph with a vertex set V , |V | = n, and an
edge set E of size N = 1

2
n∆. We assume an ordering on V , thereby inducing an ordering on

the edges of E(v) for every v ∈ V . Let F = GF(2) and fix C to be a linear [∆, k=r∆, d0=δ0∆]
code over F. The code C = (G, C) is defined in [79] to be a low-complexity code C = (G, C)
over F (with respect to the graph G and the code C as above), when the underline graph
G is taken to be an expander graph. Then, C is a linear [N,K,D] code. It is known that
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K/N ≥ 2r−1 [82], and it was shown in [79] that

D ≥ N

(
δ0 − γG
1− γG

)2

= N
(
δ2
0 − O(γG)

)
, (1.7)

where γG is the ratio between the second largest eigenvalue of the adjacency matrix of G
and ∆. Thus, when the underlying graphs have a good separation between the first and
the second eigenvalue, namely γG → 0 for ∆ → ∞, the minimum distance of the codes
C approaches Nδ2

0 . Such graphs can be taken from the families of Ramanujan graphs, for
example those from [53] or [62].

When the codes C are taken to be random binary codes of rate r and relative minimum
distance δGV (r) = H−1

2 (1− r), it can be concluded from inequality (1.7) that the codes C of
rate R have relative minimum distance

δ ≥
(
H−1

2

(
1
2
(1−R)

))2
.

The construction in [79] can be generalized to larger fields F. When F ≥ ∆, the constituent
code C can be taken as a GRS code, thus resulting in a better relative minimum distance of
the code C (over the alphabet F), which becomes in that case

δ ≥
(

1
2
(1−R)

)2
.

Decoding

In [79], the decoder for the binary code C is presented. The decoder has time complexity
which is linear in the overall code length N . That decoder is able to correct number of errors
which is a fraction

1

48

(
H−1

2

(
1
2
(1−R)

))2

of the code lenght; namely, the fraction is only about 1
48

of the code relative minimum
distance. Still, the result has high importance since it was the first linear-time decoder that
was able to correct a constant fraction of errors (which was not dependent on the length of
the code). Here, we omit the details of the decoder.

1.4.2 Expander codes of Zémor

Construction

In [84], Zémor considered a special class of the Sipser-Spielman construction of expander
codes, where the underlying graph is bipartite [79], [82]. We summarize the construction
next.
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Let G = (V,E) be a ∆-regular bipartite undirected graph with a vertex set V = A ∪ B
such that A ∩ B = ∅ and |A| = |B| = n, and an edge set E of size N = n∆ such that every
edge in E has one endpoint in A and one endpoint in B. We assume an ordering on V ,
thereby inducing an ordering on the edges of E(v) for every v ∈ V .

Let F = GF(q). Observe that the subset A (respectively, B) induces on every word
x ∈ FN a partition into n non-overlapping sub-words (x)E(v) ∈ F∆, where v ranges over the
elements of A (respectively, B).

Fix C to be a linear [∆, k=r∆, d0=δ0∆] code over F. The code C = (G, C) is defined in [84]
to be a low-complexity code C = (G, C) over F (with respect to the graph G and the code C
as above). The C is a linear [N,K,D] code. It also holds in this case that K/N ≥ 2r−1,
and that

D ≥ N

(
δ0 − γG
1− γG

)2

= N
(
δ2
0 − O(γG)

)
, (1.8)

where γG is the ratio between the second largest eigenvalue of the adjacency matrix of G and
∆. If the graph G in the construction of C is taken to be a Ramanujan graph, we obtain
from (1.8) that the O(·) expression goes to zero as ∆ becomes large.

Decoding

The iterative decoding algorithm of Zémor is shown in Figure 1.3, where D : F∆ → C stands
for a decoder for C that recovers correctly any pattern of less than d0/2 errors. It is shown
in [84] that the algorithm in Figure 1.3 can correct any error word whose Hamming weight
does not exceed

1

2
· αNδ0

(
δ0
2
− γG

)
=

1

4
· αN

(
δ2
0 − O(γG)

)
,

for any fixed positive constant α < 1. The number of iterations ν in Figure 1.3 can be taken
as ⌊(log n)/ log (2−α)⌋. Using similar arguments as in [79], it can be shown that Zémor’s
algorithm can be implemented in time complexity O(N), assuming that α and the code C are
fixed (in particular, this assumption implies that D can be implemented in constant time).

1.4.3 Expander codes of Barg and Zémor (2002)

Construction

We briefly recall here the construction and the decoder in [10]. Let G = (V,E) be a bipartite
∆-regular undirected connected graph with a vertex set V = A ∪B, as in Section 1.4.2.

Let CA and CB be two linear codes of length ∆ over F (this F will be defined below). The
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Input: Received word y = (ye)e∈E.

Let z ← y.

For i← 1 to ν do {

Let X stand for A if i is odd, and for B otherwise.

Iteration i: For every v ∈ X let (z)E(v) ← D ((z)v).

}

Output: z.

Figure 1.3: Zémor’s decoder in [84].

code CBZ2 = (G, CA : CB) is defined as

CBZ2 =
{
c ∈ F

N : (c)E(u) ∈ CA for every u ∈ A
and (c)E(u) ∈ CB for every u ∈ B

}
, (1.9)

where (x)E(u) denotes the sub-word of x = (xe)e∈E ∈ FN that is indexed by E(u). The
produced code C is a linear code of length N over F.

The authors of [10] consider two separate cases.

Case 1: F = GF(2). In this case, the codes CA and CB are chosen to have the best possible
decoding error probability under maximum-likelihood decoding.

Case 2: F = (GF(2))ℓ, for ℓ ∈ N. Fix some small ǫ > 0. The code CA is taken as a linear
[∆ℓ, rA∆ℓ, δA∆ℓ] binary code. The code CA can also be thought as a linear [∆, rA∆, DA]
code over F. In addition, CA is chosen to satisfy all the following properties:

(a) CA has the best possible error probability under maximum-likelihood decoding;

(b) δA ≥ H−1
2 (1− rA)− ǫ ;

(c) DA ≥ (1− rA)∆− ǫ .

The code CB is defined similarly to (a)-(c) with respect to its parameters.

Decoding

Let us transmit a codeword c = (ce)e∈E ∈ CBZ2 through a BSC with crossover probability
p. Assume that y = (ye)e∈E is the received (erroneous) word. A formal definition of the
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decoder DBZ2 appears in Figure 1.4. The number of iterations ν is taken to be O(logn).

Input: Received word y = (ye)e∈E in FN .

Let z ← y.

For i← 1, 2, . . . , ν do {

If i is odd then X ≡ A, D ≡ DA,
else X ≡ B, D ≡ DB.

For u ∈ X do (z)E(u) ← D((z)E(u)).

}

Output: z if z ∈ CBZ2 (and declare ‘error’ otherwise).

Figure 1.4: Decoder DBZ2 of Barg and Zémor for the code CBZ2.

The decoders DA and DB are the maximum-likelihood decoders for the codes CA and CB,
respectively.

Results

Fix a design code rate R < C2(p). In [10], Barg and Zémor show that for F = GF(2), the
decoding error probability of the code CBZ2, under the decoder in Figure 1.4, is bounded by

Probe(CBZ2) ≤ exp{−αNf3(R)} ,
where α ∈ (0, 1) is a constant, and f3(R) is bounded by

f3(R) ≥ max
R≤r<C2(p)

{
E(r) ·

(
1
2
H−1

2 (r −R)−Θ

(
1√
∆

))}
.

Moreover, it is shown in [10] that for a code CBZ2 over (GF(2))ℓ with the constituent
codes CA and CB satisfying properties (a)-(c) above, and for the decoder in Figure 1.4, the
decoding error probability is bounded by

Probe(CBZ2) ≤ exp{−αNf2(R)} ,
where α ∈ (0, 1) is a constant, and f2(R) is bounded by

f2(R) ≥ max
R≤r<C

{
E(r) ·

(
1
2
(r −R)−Θ

(
1√
∆

))}
.
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1.4.4 Expander codes of Barg and Zémor (2003)

Construction

We recall here the construction of the expander codes presented in [8]. Let G = (V,E) be
a bipartite graph with V = V0 ∪ (V1 ∪ V2), such that each edge has one endpoint in V0 and
one endpoint in either V1 or V2. Let |Vi| = n for i = 0, 1, 2. Let the degree of each vertex in
V0, V1, and V2 be ∆, ∆1, and ∆2 = ∆ −∆1, respectively. In addition, let the subgraph G1

induced by V0 ∪ V1 be a regular bipartite Ramanujan graph and denote by E1 its edge set.
Let λ1 be a second largest eigenvalue of the adjacency matrix of G1.

Take ℓ ∈ N. Let CA be a linear [l∆, R0l∆, d0 = l∆δ0] binary code of rate R0 = ∆1/∆.
It can also be thought as a linear code of length ∆ over F = (GF(2))ℓ. Let CB be a linear
[∆1, R1∆1, d1 = ∆1δ1] code over F, and let Caux be a code of length ∆1 over F. The code
CBZ3 is defined as the set of vectors x = (x1, x2, · · · , xN ), indexed by the set E of size
N = ∆n, such that

1. For every vertex v ∈ V0, the subvector (x)E(v) is a codeword of CA (over F) and the set
of coordinates E1(v) is an information set for the code CA.

2. For every vertex v ∈ V1, the subvector (x)E(v) is a codeword of CB (over F).

3. For every vertex v ∈ V0, the subvector (x)E1(v) is a codeword of Caux (over F).

Decoding

The authors of [8] proposed a decoding algorithm for the code CBZ3. In the first iteration,
each subvector z(v), v ∈ V0, is treated as follows: the decoder computes, for every symbol
b of the q-ary alphabet, and for every edge e ∈ E1 incident to v, the weight of the edge as
follows:

de,b(z) = min
a∈CA:ae=b

d2(a, (z)E(v)),

where ae denotes the q-ary coordinate of the codeword a that corresponds to the edge e,
and d2(·, ·) is the binary Hamming distance. This information is passed along the edge e
to the corresponding decoder on the right-hand side of the bipartite graph. In the second
iteration, for every vertex w ∈ V1 the decoder associated to it finds a q-ary codeword b =
(b1, . . . , b∆1) ∈ CB that satisfies

b = arg min
x=(x1,...,x∆1

)∈CB

∆1∑

i=1

dw(i),xi
(z) ,

and writes bi on the edge w(i), i = 1, . . . ,∆1.

Then, the decoder continues similarly to the decoder in [10].
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Results

It is shown in [8] that the decoding error probability of the code CBZ3, Probe(CBZ3), satisfies

Probe(CBZ3) ≤ exp
{
− n∆lδ1(1 + α)−1 · (E(R0)−Mα)(1− o(1))

}
,

where α is a constant defined in [8] (in paritcular, 1 > α > 2λ1/d1), and

M = M(R, p) =

{
1
2
log2((1− p)/p) if R ≤ Rcrit

log2

(
δGV (R)(1−p)
(1−δGV (R))p

)
if R ≥ Rcrit

,

δGV (R) = H−1
2 (1−R) is the Gilbert-Varshamov relative distance for the rate R, and Rcrit =

1−H2(ρ0) is a so-called critical rate, where ρ0 =
√
p/(
√
p+
√

1− p) (see [8] for details). This
decoding error probability could be made arbitrarily close to the decoding error probability
of concatenated codes (1.3) by taking significantly large codes.

It is also shown in [8] that the minimum distance of the code CBZ3 over GF(2) is bounded
from below by

δ0δ1

(
1− λ1

daux

)(
1− λ1

2d1

)
N , (1.10)

and thus the codes CBZ3 approach the Zyablov bound (1.5) for significantly large values of
N .

The decoder for the CBZ3, presented above, is capable of correcting a number of errors
which is almost half of the lower bound in (1.10). This decoder has decoding time complexity
which grows linearly with the code length.

1.4.5 Barg and Zémor’s analysis of expander codes (2004)

In [9], using a more sophisticated analysis, the authors improve on the minimum-distance
bounds for the codes described in Section 1.4.3 and Section 1.4.4.

In particular, for the codes CBZ2 of rate R, they bounded the relative minimum distance
from below by

δ(R) ≥ 1

4
(1−R)2 · min

δGV ((1+R)/2)<B<
1
2

g(B)

H2(B)
,

where the function g(B) is defined on page 28. For the codes CBZ3 of rate R, the relative
minimum distance is bounded from below by

δ(R) ≥ max
R≤r≤1




 min
δGV (r)<B<

1
2

(
δ0(B, r) ·

1−R/r
H2(B)

)

 ,
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where the function δ0(B, r) is defined on page 28. In particular, it follows that the relative
minimum distance of these two families of codes is higher than the Zyablov bound (1.5) for
a wide range of code rates.

1.5 Summary

In Table 1.1, we compare several relevant research works. The notations R and N stand for
the rate and overall length of the cited constructions. The results in the table are compared
according to the following three parameters (if available):

• Error probability (as a function of N).

• Relative minimum distance (as a function of R).

• Encoding/decoding complexity per entry of codeword.

The results appear in chronological order.
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Work Upper bound on Lower bound on Encoding/decoding Remarks
error probability relative minimum distance complexity per bit

Gallager [33], [34] ZG
−
√

N , Asymptotically N/A Shannon capacity
(1962− 1963) ZG is some constant. good codes. is not attained.

Forney [30], [31] max
R≤r≤1−Hq(p)

e−NE(r)(1−R
r

) N/A O(N) Concatenated codes,

(1966) nonconstructive.

Justesen [41] N/A max
max{R,1/2}≤r≤1

(1− R
r )H−1

2 (1− r), O(N)

(1972) attains the Zyablov bound.

Sipser, Spielman N/A 1
48 (H−1

2 (1
2 (1−R)))2 O(1) for decoding, Low rates in [81].

[79], [81] O(1) for encoding in [81].
(1996)

Richardson, Urbanke ZRU
−N N/A Decoding is O(1), Random coding

[69], [70], [71] ZRU is some constant. encoding is O(1) result.
(2001) with probability → 1 Degree sequences

when N →∞. found by
computer search,

very close to
the Shannon capacity.
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Work Upper bound on Lower bound on Encoding/decoding Remarks
error probability relative minimum distance complexity per bit

Barg, Zémor max
R≤r≤1−Hq(p)

e−NE(r) r
2
(1−R

r
) 1

2 (1−R)H−1
2 (1

2 (1−R)) O(1)

[10], [84] Decoding only.
(2001− 2002)

Guruswami, Indyk N/A max
R≤r≤1

(1−R
r )H−1

2 (1−r), O(1)

[36], [37], [38] attains the Zyablov bound.
(2002)

Barg, Zémor max
R≤r≤1−Hq(p)

e−NE(r)(1−R
r

) 1
4 (1 −R)2 ·min (g(B)/H2(B))

δGV ((1+R)/2)<B<1/2

O(1) g(B) and δ0(B, r)

[8], [9] attains Forney’s exponent. for high rates. Decoding only. are defined

(2003− 2004) max
R≤r≤1




 min
δGV (r)<B<

1
2

(
δ0(B, r) · 1−R/r

H2(B)

)



 on page 28.

for low rates.
Surpasses the Zyablov bound.

Table 1.1: Comparison of known results
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Definitions of the functions g(B) and δ0(B, r)

Let B1 be the largest root of the equation

H2(B) = H2(B)

(
B− H2(B) · δGV (R)

1−R

)
= − (B− δGV (R)) · log2(1− B) .

Moreover, let

a1 =
B1

H2(B1)
− δGV (R)

H2(δGV (R))
,

and

b1 =
δGV (R)

H2(δGV (R))
· B1 −

B1

H2(B1)
· δGV (R)) .

The function g(B) is defined in [9] as

g(B) =






δGV (R)

1−R if B ≤ δGV (R)

B

H2(B)
if δGV (R) ≤ B and R ≤ 0.284

a1B + b1
B1 − δGV (R)

if δGV (R) ≤ B ≤ B1 and 0.284 < R ≤ 1

B

H2(B)
if B1 < B1 ≤ 1 and 0.284 < R ≤ 1

.

The function δ0(B, r) is defined to be ω⋆⋆(B) for δGV (r) ≤ B ≤ B1, where

ω⋆⋆(B) = rB + (1− r)H−1
2

(
1− r

1− rH2(B)

)
,

and B1 is the only root of the equation

δGV (r) = w⋆(B) ,

where

w⋆(B) = (1− r)
(

(2H2(B)/B + 1)−1 +
B

H2(B)

(
1− H2

(
(2H2(B)/B + 1)−1

)))
.

For B1 ≤ B ≤ 1
2
, the function δ0(B, r) is defined to be a tangent to the function ω⋆⋆(B) drawn

from the point
(

1
2
, ω⋆(1

2
)
)
.
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Chapter 2

Nearly-MDS expander codes

The material in this section has
been published as [74], [75].

In this chapter, we present a family of codes which improves on the Guruswami-Indyk
construction [38], which was mentioned in Section 1.3.2. Specifically, our codes will satisfy
properties (P1)–(P3), except that the alphabet size in property (P1) will now be only

2O((log(1/ǫ))/ǫ3) . (2.1)

The basic ingredients of our construction are similar to those used in [38] (and also in [4]
and [5]), yet their layout (in particular, the order of application of the various building
blocks), and the choice of parameters will be different. Our presentation will be split into
two parts. We first describe in Section 2.1 a construction that satisfies only the two prop-
erties (P1) and (P3) over an alphabet of size (2.1). These two properties will be proved in
Sections 2.2 and 2.3. We also show that the codes studied by Barg and Zémor in [10] and [8]
can be seen as concatenated codes, with our codes serving as the outer codes.

The second part of our presentation consists of Section 2.4, where we modify the construc-
tion of Section 2.1 and use the resulting code as a building block in a second construction,
which satisfies property (P2) as well.

2.1 Construction of linear-time decodable codes

Let G = (V = A∪B, E) be a bipartite ∆-regular graph defined in Section 1.4.2, with
|A| = |B| = n, |E| = n∆. We restrict ourselves to simple graphs G, i.e. graphs with
no parallel edges and no self-loops. We will assume hereafter without any practical loss of
generality that n > 1. As before, we use the notation E(u) for the set of edges that are
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incident with u, and (z)E(u) for the sub-block of z that is indexed by E(u) (we assume an
ordering on V , thereby inducing an ordering on the edges of E(u) for every u ∈ V ).

Let F be the field GF(q) and let CA and CB be linear [∆, rA∆, δA∆] and [∆, rB∆, δB∆]
codes over F, respectively. We define the code C = (G, CA : CB) similarly to the definition of
CBZ2 in (1.9), namely, as the linear code of length |E| over F:

C =
{

c ∈ F
|E| : (c)E(u) ∈ CA for every u ∈ A

and (c)E(v) ∈ CB for every v ∈ B
}
. (2.2)

Let Φ be the alphabet FrA∆. Fix some linear one-to-one mapping E : Φ → CA over F,
and let the mapping ψE : C→ Φn be given by

ψE(c) =
(
E−1 ((c)E(u))

)
u∈A

, c ∈ C . (2.3)

That is, the entries of ψE(c) are indexed by A, and the entry that is indexed by u ∈ A equals
E−1 ((c)E(u)). We now define the code CΦ of length n over Φ by

CΦ = {ψE(c) : c ∈ C} . (2.4)

Every codeword x = (xu)u∈A of CΦ (with entries xu in Φ) is associated with a unique
codeword c ∈ C such that

E(xu) = (c)E(u) , u ∈ A .

Based on the definition of CΦ, the code C can be represented as a concatenated code
with an inner code CA over F and an outer code CΦ over Φ. It is possible, however, to use
CΦ as an outer code with inner codes other than CA. Along these lines, the codes studied
in [10] and [8] can be represented as concatenated codes with CΦ as an outer code, whereas
the inner codes are taken over a sub-field of F.

2.2 Bounds on the code parameters

Let C = (G, CA : CB), Φ, and CΦ be as defined in Section 2.1. It was shown in [10] that the
rate of C is at least

rA + rB − 1 . (2.5)

From the fact that C is a concatenated code with an inner code CA and an outer code CΦ,
it follows that the rate of CΦ is bounded from below by

rA + rB − 1

rA

= 1− 1

rA

+
rB

rA

. (2.6)
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In particular, the rate approaches rB when rA → 1.

We next turn to computing a lower bound on the relative minimum distance of CΦ. By
applying this lower bound, we will then verify that CΦ satisfies property (P1). Our analysis
is based on that in [8], and we obtain here an improvement over a bound that can be inferred
from [8]; we will need that improvement to get the reduction of the alphabet size from (1.6)
to (2.1). We first introduce several notations.

Denote by AG the adjacency matrix of G. It is known that ∆ is the largest eigenvalue of
AG. Let γG be the ratio between the second largest eigenvalue of AG and ∆.

When G is taken from a sequence of Ramanujan expander graphs with constant degree
∆, such as the LPS graphs in [53], we have

γG ≤
2
√

∆−1

∆
.

For a nonempty subset S of the vertex set V of G, we will use the notation GS to stand
for the subgraph of G that is induced by S: the vertex set of GS is given by S, and its edge
set, denoted by ES, consists of all the edges in G that have each of their endpoints in S. The
degree of u in GS, which is the number of adjacent vertices to u in GS, will be denoted by
degS(u).

Theorem 2.2.1 The relative minimum distance of the code CΦ is bounded from below
by

δB − γG
√
δB/δA

1− γG
.

In particular, this lower bound approaches δB when γG → 0.

The proof of the theorem will make use of Proposition 2.2.3 below, which is an im-
provement on Corollary 9.2.5 in Alon and Spencer [3] for bipartite graphs, and is also an
improvement on Lemma 4 in Zémor [84]. We will need the following technical lemma for
that proposition (which is a generalization of to the well known expander mixing lemma .
The proof of this lemma can be found in Appendix A.

Lemma 2.2.2 Let χ be a real function on the vertices of G where the images of χ are
restricted to the interval [0, 1]. Write

σ =
1

n

∑

u∈A

χ(u) and τ =
1

n

∑

v∈B

χ(v) .

Then
1

∆n

∑

u∈A

∑

v∈N (u)

χ(u)χ(v) ≤ στ + γG
√
σ(1−σ)τ(1−τ)

≤ (1−γG)στ + γG
√
στ .
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(Comparing to the results in [84], Lemma 4 therein is stated for the special case where the
images of χ are either 0 or 1. Our first inequality in Lemma 2.2.2 yields a bound which is
always at least as tight as Lemma 4 in [84].)

Proposition 2.2.3 Let S ⊆ A and T ⊆ B be subsets of sizes |S| = σn and |T | = τn,
respectively, such that σ + τ > 0. Then the sum of the degrees in the graph GS∪T is bounded
from above by ∑

u∈S∪T

degS∪T (u) ≤ 2
(
(1−γG)στ + γG

√
στ
)
∆n .

Proof. We select χ(u) in Lemma 2.2.2 to be

χ(u) =

{
1 if u ∈ S ∪ T
0 otherwise

.

On the one hand, by Lemma 2.2.2,

∑

u∈A

∑

v∈N (u)

χ(u)χ(v) ≤
(
(1−γG)στ + γG

√
στ
)
∆n .

On the other hand,

2
∑

u∈A

∑

v∈N (u)

χ(u)χ(v) =
∑

u∈S∪T

degS∪T (u) .

These two equations yield the desired result.

Proof of Theorem 2.2.1. First, it is easy to see that CΦ is a linear subspace over F

and, as such, it is an Abelian subgroup of Φn. Thus, the minimum distance of CΦ equals the
minimum weight (over Φ) of any non-zero codeword of CΦ.

Pick any non-zero codeword x ∈ CΦ, and let c = (ce)e∈E be the unique codeword in C

such that x = ψE(c). Denote by Y ⊆ E the support of c (over F), i.e.,

Y = {e ∈ E : ce 6= 0} .

Let S (respectively, T ) be the set of all vertices in A (respectively, B) that are endpoints of
edges in Y . In particular, S is the support of the codeword x. Let σ and τ denote the ratios
|S|/n and |T |/n, respectively, and consider the subgraph G(Y ) = (S : T, Y ) of G. Since the
minimum distance of CA is δA∆, the degree in G(Y ) of every vertex in A is at least δA∆.
Therefore, the number of edges in G(Y ) satisfies

|Y | ≥ δA∆ · σn .
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Similarly, the degree in G(Y ) of every vertex in B is at least δB∆ and, thus,

|Y | ≥ δB∆ · τn .

Therefore,
|Y | ≥ max{δAσ, δBτ} ·∆n .

On the other hand, G(Y ) is a subgraph of GS∪T ; hence, by Proposition 2.2.3,

|Y | ≤ 1

2

∑

u∈S∪T

degS∪T (u) ≤
(
(1−γG)στ + γG

√
στ
)
∆n .

Combining the last two equations yields

max{δAσ, δBτ} ≤ (1−γG)στ + γG
√
στ . (2.7)

We now distinguish between two cases.

Case 1: σ/τ ≤ δB/δA. Here (2.7) becomes

δBτ ≤ (1−γG)στ + γG
√
στ

and, so,

σ ≥ δB − γG
√
σ/τ

1− γG
≥ δB − γG

√
δB/δA

1− γG
. (2.8)

Case 2: σ/τ > δB/δA. By exchanging between σ and τ and between δA and δB in (2.8),
we get

τ ≥ δA − γG
√
δA/δB

1− γG
.

Therefore,

σ >
δB
δA
· τ ≥ δB

δA
· δA − γG

√
δA/δB

1− γG
=
δB − γG

√
δB/δA

1− γG
.

Either case yields the desired lower bound on the size, σn, of the support S of x.

The next example demonstrates how the parameters of CΦ can be tuned so that the
improvement (2.1) of property (P1) holds.

Example 2.2.1 Fix δA = ǫ for some small ǫ ∈ (0, 1] (in which case rA > 1−ǫ), and then
select q and ∆ so that q > ∆ ≥ 4/ǫ3. For such parameters, we can take CA and CB to be
[∆, rA∆, δA∆] and [∆, rB∆, δB∆] GRS codes over F, respectively (with rA+δA = rB+δB = 1).
We also assume that G is a Ramanujan bipartite graph, in which case

γG ≤
2
√

∆−1

∆
< ǫ3/2 .
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By (2.6), the rate of CΦ is bounded from below by

1− 1

1− ǫ +
rB

1− ǫ > rB − ǫ ,

and by Theorem 2.2.1, the relative minimum distance is at least

δB − γG
√
δB/δA

1− γG
≥ δB − γG

√
δB/δA > δB − ǫ3/2 · 1√

ǫ

= δB − ǫ > 1−rB−ǫ .

Thus, the code CΦ approaches the Singleton bound when ǫ→ 0. In addition, if q and ∆ are
selected to be (no larger than) O(1/ǫ3), then the alphabet Φ has size

|Φ| = qrA∆ = 2O((log(1/ǫ))/ǫ3) .

From Example 2.2.1 we can state the following corollary.

Corollary 2.2.4 For any design rate R ∈ (0, 1] and sufficiently small ǫ > 0 there is an
infinite family of codes CΦ of rate at least R and relative minimum distance greater than
1−R− ǫ, over an alphabet of size as in (2.1).

2.3 Decoding algorithm

Let C = (G, CA : CB) be defined over F = GF(q) as in Section 2.1. Figure 2.1 presents an
adaptation of the iterative decoder of Sipser and Spielman [79] and Zémor [84] to the code
CΦ, with the additional feature of handling erasures (as well as errors over Φ): as we show in
Theorem 2.3.1 below, the algorithm corrects any pattern of ϑ errors and ρ erasures, provided
that ϑ+ (ρ/2) < βn, where

β =
(δB/2)− γG

√
δB/δA

1− γG
.

Note that β equals approximately half the lower bound in Theorem 2.2.1. The value of ν in
the algorithm, which is specified in Theorem 2.3.1 below, grows logarithmically with n.

We use the notation “?” to stand for an erasure. The algorithm in Figure 2.1 makes
use of a word z = (ze)e∈E over F ∪ {?} that is initialized according to the contents of the
received word y as follows. Each sub-block (z)E(u) that corresponds to a non-erased entry
yu of y is initialized to the codeword E(yu) of CA. The remaining sub-blocks (z)E(u) are
initialized as erased words of length ∆. Iterations i = 3, 5, 7, . . . use an error-correcting
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Input: Received word y = (yu)u∈A in (Φ ∪ {?})n.

Initialize: For u ∈ A do: (z)E(u) ←
{
E (yu) if yu ∈ Φ
?? . . . ? if yu = ?

.

Iterate: For i = 2, 3, . . . , ν do:

(a) If i is odd then U ≡ A and D ≡ DA, else U ≡ B and D ≡ DB.

(b) For every u ∈ U do: (z)E(u) ← D ((z)E(u)).

Output: ψE(z) if z ∈ C (and declare ‘error’ otherwise).

Figure 2.1: Decoder for the nearly-MDS code CΦ.

decoder DA : F∆ → CA that recovers correctly any pattern of less than δA∆/2 errors (over
F), and iterations i = 2, 4, 6, . . . use a combined error-erasure decoder DB : (F∪{?})∆ → CB
that recovers correctly any pattern of a errors and b erasures, provided that 2a + b < δB∆
(b will be positive only when i = 2).

Theorem 2.3.1 Suppose that

√
δAδB > 2γG > 0 , (2.9)

and fix σ to be a positive real number such that

σ < β =
(δB/2)− γG

√
δB/δA

1− γG
. (2.10)

If

ν = 2

⌊

log

(
β
√
σn− σ
β − σ

)⌋

+ 3

then the decoder in Figure 2.1 recovers correctly any pattern of ϑ errors (over Φ) and ρ
erasures, provided that

ϑ+
ρ

2
≤ σn . (2.11)

The proof of the theorem makes use of the following lemma.
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Lemma 2.3.2 Let χ, σ, and τ be as in Lemma 2.2.2, and suppose that the restriction
of χ to B is not identically zero and that γG > 0. Let δB be a real number for which the
following condition is satisfied for every v ∈ B:

χ(v) > 0 =⇒
∑

u∈N (v)

χ(u) ≥ δB∆

2
.

Then √
σ

τ
≥ (δB/2)− (1−γG)σ

γG
.

The proof of Lemma 2.3.2 can be found in Appendix A. This lemma implies an upper
bound on τ , in terms of σ; it can be verified that this bound is always at least as tight as
Lemma 5 in [84].

Proof of Theorem 2.3.1. For i ≥ 2, let Ui be the value of the set U at the end of
iteration i in Figure 2.1, and let Si be the set of all vertices u ∈ Ui such that (z)E(u) is in
error at the end of that iteration. Let χ1 : (A ∪B)→ {0, 1

2
, 1} be the function

χ1(u) =






1 if u ∈ A and yu is in error
1
2

if u ∈ A and yu is an erasure
0 otherwise

,

and, for i ≥ 2 define the function χi : (A ∪ B)→ {0, 1
2
, 1} recursively by

χi(u) =






1 if u ∈ Si

0 if u ∈ Ui \ Si

χi−1(u) if u ∈ Ui−1

,

where U1 = A.

Denote

σi =
1

n

∑

u∈Ui

χi(u) .

Obviously, σ1n = ϑ+ (ρ/2) and, so, by (2.11) we have σ1 ≤ σ.

Let ℓ be the smallest positive integer (possibly ∞) such that σℓ = 0. Since both DA and
DB are bounded-distance decoders, a vertex v ∈ Ui can belong to Si for even i ≥ 2, only if
the sum

∑
u∈N (v) χi(u) (which equals the sum

∑
u∈N (v) χi−1(u)) is at least δB∆/2. Similarly,

a vertex v ∈ Ui belongs to Si for odd i > 1, only if
∑

u∈N (v) χi(u) ≥ δA∆/2. It follows that

the function χi satisfies the conditions of Lemma 2.3.2 (with δA taken instead of δB for odd
i) and, so,

√
σi−1

σi
≥






δB
2γG
− 1−γG

γG
σi−1 for even 0 < i < ℓ

δA
2γG
− 1−γG

γG
σi−1 for odd 1 < i < ℓ

. (2.12)
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Using the condition σ1 ≤ σ < β, it can be verified by induction on i ≥ 2 that

σi−1

σi
≥
{
δB/δA for even 0 < i < ℓ
δA/δB for odd 1 < i < ℓ

. (2.13)

Hence, for every i > 2,
σi−2

σi

=
σi−2

σi−1

· σi−1

σi

≥ δB
δA
· δA
δB

= 1 ;

in particular, σi ≤ σ for odd i and σi ≤ σ2 for even i. Incorporating these inequalities
into (2.12) yields

1√
σi
≥ δB

2γG
√
σi−1

− 1−γG
γG

√
σ for even 0 < i < ℓ (2.14)

and
1√
σi
≥ δA

2γG
√
σi−1

− 1−γG
γG

√
σ2 for odd 1 < i < ℓ . (2.15)

By combining (2.14) and (2.15) we get that for even i > 0,

2γG
δA
√
σi+1

+
2(1−γG)

δA

√
σ2 ≥

1√
σi

≥ δB
2γG
√
σi−1

− 1−γG
γG

√
σ ,

or

1√
σi+1

≥ δAδB
4γ2

G
√
σi−1

− 1−γG
γG

(
δA
√
σ

2γG
+
√
σ2

)

≥ δAδB
4γ2

G
√
σi−1

− 1−γG
γG

(
δA
2γG

+

√
δA
δB

)
√
σ

=
δAδB
4γ2

G

(
1√
σi−1

−
√
σ

β

)
+

√
σ

β
, (2.16)

where the second inequality follows from σ2 ≤ σ · δA/δB (see (2.13)), and the (last) equality
follows from the next chain of equalities:

1−γG
γG

(
δA
2γG

+

√
δA
δB

)
√
σ =

1−γG
2γ2

G

(
2γG +

√
δAδB

)√σδA
δB

= −1−γG
2γ2

G
· 4γ2

G − δAδB√
δAδ − 2γG

√
σδA
δB

= −
(

1− δAδB
4γ2

G

)
(1−γG)

√
σ

(δB/2)− γG
√
δB/δA

= −
(

1− δAδB
4γ2

G

) √
σ

β
.
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Consider the following first-order linear recurring sequence (Λj)j≥0 that satisfies

Λj+1 =
δAδB
4γ2

G

(
Λj −

√
σ

β

)
+

√
σ

β
, j ≥ 0 ,

where Λ0 = 1/
√
σ. From (2.16) we have 1/

√
σi+1 ≥ Λi/2 for even i ≥ 0. By solving the

recurrence for (Λj), we obtain

1√
σi+1

≥ Λi/2 =

((
δAδB
4γ2

G

)i/2(
1− σ

β

)
+
σ

β

)
1√
σ
. (2.17)

From the condition (2.9) we thus get that σi+1 decreases exponentially with (even) i. A
sufficient condition for ending the decoding correctly after ν iterations is having σν < 1/n,
or

1√
σν

>
√
n .

We require therefore that ν be such that

1√
σν
≥
((

δAδB
4γ2

G

)(ν−1)/2(
1− σ

β

)
+
σ

β

)
1√
σ
>
√
n .

The latter inequality can be rewritten as

(
δAδB
4γ2

G

)(ν−1)/2

>

√
nσ − (σ/β)

1− (σ/β)
=
β
√
nσ − σ
β − σ ,

thus yielding

ν > 2 log

(
β
√
nσ − σ
β − σ

)
+ 1 ,

where the base of the logarithm equals (δAδB)/(4γ2
G). In summary, the decoding will end

with the correct codeword after

ν = 2

⌊

log

(
β
√
nσ − σ
β − σ

)⌋

+ 3 ,

iterations (where the base of the logarithm again equals (δAδB)/(4γ2
G).)

In Lemma B.1, which appears in Appendix B, it is shown that the number of actual
applications of the decoders DA and DB in the algorithm in Figure 2.1 can be bounded from
above by ω · n, where

ω = 2 ·





log

(
∆β
√
σ

β − σ
)

log

(
δAδB
4γ2

G

)





+
1 +

δA
δB

1−
(

4γ2
G

δAδB

)2 .

38



Thus, if δA and δB are fixed and the ratio σ/β is bounded away from 1 and G is a Ramanujan
graph, then the value of ω is bounded from above by an absolute constant (independent of ∆).

The algorithm in Figure 2.1 allows us to use GMD decoding in cases where CΦ is used
as an outer code in a concatenated code. In such a concatenated code, the size of the inner
code is |Φ| and, thus, it does not grow with the length n of CΦ. A GMD decoder will apply
the algorithm in Figure 2.1 a number of times that is proportional to the minimum distance
of the inner code. Thus, if the inner code has rate that is bounded away from zero, then the
GMD decoder will have time complexity that grows linearly with the overall code length.
Furthermore, if CA, CB, and the inner code are codes that have a polynomial-time bounded-
distance decoder—e.g., if they are GRS codes—then the multiplying constant in the linear
expression of the time complexity (when measured in operations in F) is Poly(∆). For the
choice of parameters in Example 2.2.1, this constant is Poly(1/ǫ) and, since F is chosen
in that example to have size O(1/ǫ3), each operation in F can in turn be implemented by
Poly(log(1/ǫ)) bit operations. (We remark that in all our complexity estimates, we assume
that the graph G is “hard-wired” so that we can ignore the complexity of figuring out the
set of incident edges of a given vertex in G. Along these lines, we assume that each access to
an entry takes constant time, even though the length of the index of that entry may grow
logarithmically with the code length. See the discussion in [79, Section II].)

When the inner code is taken as CA, the concatenation results in the code C = (G, CA : CB)
(of length ∆n) over F, and the (linear-time) correctable fraction of errors is then the product
δA ·σ, for any positive real σ that satisfies (2.10). A special case of this result, for F = GF(2)
and CA = CB, was presented in our earlier work [80], yet the analysis therein was different.
A linear-time decoder for C was also presented by Barg and Zémor in [8], except that their
decoder requires finding a codeword that minimizes some weighted distance function, and we
are unaware of a method that performs this task in time complexity that is Poly(∆)—even
when CA and CB have a polynomial-time bounded-distance decoder.

2.4 Construction which is also linear-time encodable

In this section, we use the construction CΦ of Section 2.1 as a building block in obtaining a
second construction, which satisfies all properties (P1)–(P3) over an alphabet whose size is
given by (2.1).

2.4.1 Outline of the construction

Let C = (G, CA : CB) be defined over F = GF(q) as in Section 2.1. The first simple observation
that provides the intuition behind the upcoming construction is that the encoding of C, and
hence of CΦ, can be easily implemented in linear time if the code CA has rate rA = 1, in
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which case Φ = F∆. The definition of C then reduces to

C =
{
c ∈ F

|E| : (c)E(v) ∈ CB for every v ∈ B
}
.

We can implement an encoder of C as follows. Let EB : FrB∆ → CB be some one-to-one
encoding mapping of CB. Given an information word η in FrB∆n, it is first recast into a
word of length n over FrB∆ by sub-dividing it into sub-blocks ηv ∈ FrB∆ that are indexed
by v ∈ B; then a codeword c ∈ C is computed by

(c)E(v) = EB(ηv) , v ∈ B .

By selecting E in (2.3) as the identity mapping, we get that the respective codeword x =
(xu)u∈A = ψE(c) in CΦ is

xu = (c)E(u) , u ∈ A .

Thus, each of the ∆ entries (over F) of the sub-block xu can be associated with a vertex
v ∈ N (u), and the value assigned to that entry is equal to one of the entries in EB(ηv).

While having CA = Φ (= F∆) allows easy encoding, the minimum distance of the resulting
code CΦ is obviously poor. To resolve this problem, we insert into the construction another
linear [∆, r0∆, δ0∆] code C0 over F. Let H0 be some ((1−r0)∆) ×∆ parity-check matrix of
C0 and for a vector h ∈ F(1−r0)∆, denote by C0(h) the following coset of C0 within Φ:

C0(h) = {v ∈ Φ : H0v = h} .

Fix now a list of vectors s = (hu)u∈A where hu ∈ F(1−r0)∆, and define the subset C(s) of C

by
C(s) = {c ∈ C : (c)E(u) ∈ C0(hu) for every u ∈ A} ;

accordingly, define the subset (C(s))Φ of CΦ by

(C(s))Φ =
{
ψE(c) = ((c)E(u))u∈A : c ∈ C(s)

}
.

Now, if s is all-zero, then C(s) coincides with the code C(0) = (G, C0 : CB); otherwise, C(s)
is either empty or is a coset of C(0), where C(0) is regarded as a linear subspace of C over
F. From this observation we conclude that the lower bound in Theorem 2.2.1 applies to any
nonempty subset (C(s))Φ, except that we need to replace δA by δ0.

In addition, a simple modification in the algorithm in Figure 2.1 adapts it to decode
(C(s))Φ so that Theorem 2.3.1 holds (again under the change δA ↔ δ0): during odd iterations
i, we apply to each sub-block (z)E(u) a bounded-distance decoder of C0(hu), instead of the
decoder DA.

Therefore, our strategy in designing the linear-time encodable codes will be as follows.
The raw data will first be encoded into a codeword c of C (where CA = Φ). Then we compute
the n vectors

hu = H0 · (c)E(u) , u ∈ A ,
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and produce the list s = (hu)u∈A; clearly, c belongs to C(s). The list s will then undergo
additional encoding stages, and the result will be merged with ψE(c) to produce the final
codeword. The parameters of C0, which determine the size of s, will be chosen so that the
overhead due to s will be negligible.

During decoding, s will be recovered first, and then we will apply the aforementioned
adaptation to (C(s))Φ of the decoder in Figure 2.1, to reconstruct the information word η.

2.4.2 Details of the construction

We now describe the construction in more detail. We let F be the field GF(q) and ∆1 and
∆2 be positive integers. The construction makes use of two bipartite regular graphs,

G1 = (A : B,E1) and G2 = (A : B,E2) ,

of degrees ∆1 and ∆2, respectively. Both graphs have the same number of vertices; in fact,
we are making a stronger assumption whereby both graphs are defined over the same set
of vertices. We denote by n the size of A (or B) and by Φ1 and Φ2 the alphabets F∆1 and
F∆2, respectively. The notations E1(u) and E2(u) will stand for the sets of edges that are
incident with a vertex u in G1 and G2, respectively.

We also assume that we have at our disposal the following four codes:

• a linear [∆1, r0∆1, δ0∆1] code C0 over F;

• a linear [∆1, r1∆1, δ1∆1] code C1 over F;

• a linear [∆2, r2∆2, δ2∆2] code C2 over F;

• a code Cm of length n and rate rm over the alphabet Φm = Fr2∆2.

The rates of these codes need to satisfy the relation

(1−r0)∆1 = rmr2∆2 ,

and the code Cm is assumed to have the following properties:

1. Its rate is bounded away from zero: there is a universal positive constant κ such that
rm ≥ κ.

2. Cm is linear-time encodable, and the encoding time per symbol is Poly(log |Φm|).

3. Cm has a decoder that recovers in linear-time any pattern of up to µn errors (over
the alphabet Φm), where µ is a universal positive constant. The time complexity per
symbol of the decoder is Poly(log |Φm|).
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(By a universal constant we mean a value that does not depend on any other parameter, not
even on the size of Φm.) For example, we can select as Cm the code of Spielman in [81], in
which case κ can be taken as 1/4.

Based on these ingredients, we introduce the codes

C1 = (G1,Φ1 : C1) and C2 = (G2,Φ2 : C2)

over F. The code C1 will play the role of the code C as outlined in Section 2.4.1, whereas
the codes Cm and C2 will be utilized for the encoding of the list s that was described there.

The overall construction, which we denote by C, is now defined as the set of all words of
length n over the alphabet

Φ = Φ1 × Φ2

that are obtained by applying the encoding algorithm in Figure 2.2 to information words η

of length n over Fr1∆1 . A schematic diagram of the algorithm is shown in Figure 2.3. (In
this algorithm, we use a notational convention whereby entries of information words η are
indexed by B, and so are codewords of Cm.)

From the discussion in Section 2.4.1 and from the assumption on the code Cm it readily
follows that the encoder in Figure 2.2 can be implemented in linear time, where the encoding
complexity per symbol (when measured in operations in F) is Poly(∆1,∆2). The rate of
C is also easy to compute: the encoder in Figure 2.2 maps, in a one-to-one manner, an
information word of length n over an alphabet of size qr1∆1 , into a codeword of length n over
an alphabet Φ of size q∆1+∆2 . Thus, the rate of C is

r1∆1n

(∆1 + ∆2)n
=

r1
1 + (∆2/∆1)

. (2.18)

In the next section, we show how the parameters of C can be selected so that it becomes
nearly-MDS and also linear-time decodable.

2.4.3 Design, decoding, and analysis

We will select the parameters of C quite similarly to Example 2.2.1. We assume that the
rates r1 and r2 of C1 and C2 are the same and are equal to some prescribed value R, and
define

αR = 8 · (1−R) ·max{R/µ, 2/κ}
(notice that αR can be bounded from above by a universal constant that does not depend
on R, e.g., by 16/min{2µ, κ}). We set δ0 = κ · ǫ for some positive ǫ < R (in which case
1−r0 < κ · ǫ), and then select q, ∆1, and ∆2 so that q > ∆1 ≥ αR/ǫ3 and

∆2 =
(1−r0)∆1

rmR
(< ∆1) ; (2.19)
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Input: Information word η = (ηv)v∈B of length n over Fr1∆1 .

(E1) Using an encoder E1 : Fr1∆1 → C1, map η into a codeword c of C1 by

(c)E1(v) ← E1(ηv) , v ∈ B .

(E2) Fix some ((1−r0)∆1)×∆1 parity-check matrix H0 of C0 over F, and compute
the n vectors

hu ← H0 · (c)E1(u) , u ∈ A ,

to produce the list s = (hu)u∈A.

(E3) Regard s as a word of length (1−r0)∆1n (= rmr2∆2n) over F, and map it by
an encoder of Cm into a codeword w = (wv)v∈B of Cm.

(E4) Using an encoder E2 : Fr2∆2 → C2, map w into a codeword d of C2 by

(d)E2(v) ← E2(wv) , v ∈ B .

Output: Word x = (xu)u∈A in (Φ1 × Φ2)
n whose components are given by the pairs

xu = ((c)E1(u), (d)E2(u)) , u ∈ A .

Figure 2.2: Encoder for the code C.
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Figure 2.3: Schematic diagram of the encoder for C.
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yet we also assume that q is (no larger than) O(1/ǫ3). The graphs G1 and G2 are taken as
Ramanujan graphs and C0, C1, and C2 are taken as GRS codes over F. (Requiring that both
∆1 and ∆2 be valid degrees of Ramanujan graphs imposes some restrictions on the value
(1−r0)/(rmR). These restrictions can be satisfied by tuning the precise rate of Cm last.)

Given this choice of parameters, we obtain from (2.19) that ∆2/∆1 < ǫ/R and, so, the
rate (2.18) of C is greater than

R
1 + (ǫ/R)

> R− ǫ . (2.20)

The alphabet size of C is

|Φ| = |Φ1| · |Φ2| = q∆1+∆2 = 2O((log(1/ǫ))/ǫ3) ,

as in (2.1), where we have absorbed into the O(·) term the constants κ and µ.

Our next step in the analysis of the code C consists of showing that there exists a linear-
time decoder which recovers correctly any pattern of ϑ errors and ρ erasures, provided that

2ϑ+ ρ ≤ (1−R−ǫ)n . (2.21)

This, in turn, will also imply that the relative minimum distance of C is greater than 1−R−ǫ,
thus establishing with (2.20) the fact that C is nearly-MDS.

Let x = (xu)u∈A be the transmitted codeword of C, where

xu = ((c)E1(u), (d)E2(u)) ,

and let y = (yu)u∈A be the received word; each entry yu takes the form (yu,1,yu,2), where
yu,1 ∈ Φ1 ∪{?} and yu,2 ∈ Φ2 ∪ {?}. Consider the application of the algorithm in Figure 2.4
to y, assuming that y contains ϑ errors and ρ erasures, where 2ϑ+ ρ ≤ (1−R−ǫ)n.

Step (D1) is the counterpart of the initialization step in Figure 2.1 (the entries of z here
are indexed by the edges of G2).

The role of Step (D2) is to compute a word w̃ ∈ Φn
m that is close to the codeword

w of Cm, which was generated in Step (E3) of Figure 2.2. Step (D2) uses the inverse of
the encoder E2 (which was used in Step (E4)) and also a combined error-erasure decoder
D2 : (F∪{?})∆2 → C2 that recovers correctly any pattern of a errors (over F) and b erasures,
provided that 2a + b < δ2∆2. The next lemma provides an upper bound on the Hamming
distance between w and w̃ (as words of length n over Φm).

Lemma 2.4.1 Under the assumption (2.21), the Hamming distance between w and w̃

(as words over Φm) is less than µn.
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Input: Received word y = (yu)u∈A in (Φ ∪ {?})n.

(D1) For u ∈ A do: (z)E2(u) ←
{

yu,2 if yu,2 ∈ Φ1

?? . . . ? if yu,2 = ?
.

(D2) For v ∈ B do: w̃v ← E−1
2 (D2 ((z)E2(v))).

(D3) Apply a decoder of Cm to w̃ = (w̃v)v∈B to produce an information word ŝ ∈
F(1−r0)∆1n.

(D4) Apply a decoder for (C1(ŝ))Φ1 to (yu,1)u∈A, as described in Section 2.4.1, to
produce an information word η̂ = (η̂v)v∈B.

Output: Information word η̂ = (η̂v)v∈B of length n over FR∆1 .

Figure 2.4: Decoder for the nearly-MDS linear-time encodable code CΦ.

Proof. Define the function χ : (A ∪B)→ {0, 1
2
, 1} by

χ(u) =






1 if u ∈ A and yu,2 is in error
1
2

if u ∈ A and yu,2 is an erasure
1 if u ∈ B and w̃u 6= wu

0 otherwise

.

Assuming that w̃ 6= w, this function satisfies the conditions of Lemma 2.3.2 with respect to
the graph G2, where σn equals ϑ + (ρ/2) and τn equals the number of vertices v ∈ B such
that w̃v 6= wv. By that lemma we get

√
σ

τ
≥ (δ2/2)− (1−γ2)σ

γ2
≥ (δ2/2)− σ

γ2

>
1−R− 2σ

2γ2
≥ ǫ

2γ2
, (2.22)

where γ2 stands for γG2 and the last inequality follows from (2.21). Now, by (2.19) we have

∆2 =
(1−r0)∆1

rmR
>
ǫ∆1

R ≥ αR
R · ǫ2 ≥

8(1−R)

µ · ǫ2 ,

from which we get the following upper bound on the square of γ2:

γ2
2 ≤

4(∆2−1)

∆2
2

<
4

∆2

≤ µ · ǫ2
2(1−R)

.
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Combining this bound with (2.22) yields

σ

τ
>

1−R
2µ

,

namely, τ < 2µσ/(1−R) < µ.

It follows from Lemma 2.4.1 that Step (D2) reduces the number of errors in w̃ to the
extent that allows a linear-time decoder of Cm to fully recover the errors in w̃ in Step (D3).
Hence, the list ŝ, which is computed in Step (D3), is identical with the list s that was
originally encoded in Step (E2).

Finally, to show that Step (D4) yields complete recovery from errors, we apply Theo-
rem 2.3.1 to the parameters of the code (G1, C0 : C1). Here δ0 = κ · ǫ and

γ1 = γG1 <
2√
∆1

≤ 2ǫ3/2

√
αR
≤ ǫ3/2

2
√

(1−R)/κ
;

therefore,

β =
(δ1/2)− γ1

√
δ1/δ0

1− γ1
>

1−R
2
− γ1

√
1−R
δ0

>
1−R−ǫ

2

and, so, by (2.21), the conditions of Theorem 2.3.1 hold for σ = (1−R−ǫ)/2 (note that
β > 0 yields

√
δ0δ1 > 2γ1, thus (2.9) holds).
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Chapter 3

Decoding Expander Codes at Rates
Close to Capacity

The material in this section has
been published as [6], [7].

3.1 Introduction

The speed of the decrease of the decoding error probability as a function of the code length,
N , is a characteristic of capacity-approaching codes, which was widely studied for many code
families. However, this probability depends also on the ratio between the channel capacity
and an actual code rate. Namely, let the code rate be R = (1− ε)C, where C is the channel
capacity. It is an interesting question to ask is how the decoding error probability depends
on ε.

Another characteristic of (decoding algorithms of) codes is the time complexity of decod-
ing. As of yet, there are known families of capacity-achieving codes (over various channels)
with decoding algorithm time complexity only linear in N . However, one might look on the
decoding time complexity of code families in terms of ε. In the next two paragraphs we
discuss these characteristics for two code families.

It is known that LDPC-type codes can attain the capacity of the binary erasure channel
(BEC); the reader can refer to [54], [65], [70]. It is generally believed that LDPC-type
codes can approach capacity of a variety of other communication channels. However, it
is also believed that the decoding error probability decreases only polynomially with the
code length. As for the decoding time complexity, it was conjectured in [45] that the per-
bit complexity of message-passing decoding (e.g. [34], [69]) of LDPC or irregular repeat
accumulative (IRA) codes over any ‘typical’ channel is O

(
log 1

π

)
+ O

(
1
ε
log 1

ε

)
, where π is
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the decoding error probability. Lately, for LDPC-type codes with message-passing decoding
over BEC, the time complexity was shown to be linear in the code length and sub-linear in
1/ε. More specifically, it was shown in [54] and [65] that the decoding complexity per bit for
some sub-families of LDPC-type codes behaves as O(log(1/ε)). Recently, in [67], IRA codes
with bounded decoding complexity per bit were constructed.

In contrast, the modifications of expander codes presented in Chapter 2 and in [8], [10],
[11] also attain the capacity of the memoryless q-ary symmetric channel, and the error
probability decreases exponentially with the code length. Several recent works were devoted
to the analysis of fraction of errors that expander codes can correct (e.g. [28], [79], [84]) and
their rate-distance trade-offs (see [8], [38]). The results of this kind appear also in Chapter 2
of this thesis. While it is well known that there are decoders for expander codes having
linear-time (in the code length) complexity, the dependence of this complexity on 1/ε was
not studied. In the present chapter, we aim at studying this dependence. We investigate
the time complexity of decoding algorithms of expander codes in terms of ε, in particular for
the codes in [8], [10]. We show that (using known decoding algorithms) these specific codes
have (per-bit) time complexity that is exponential in 1/ε2.

In this thesis, we study capacity-achieving codes over a binary symmetric channel (BSC).
We show that if there exists a family of codes Cin of length N and rate R = (1− ε)C (C is
a BSC capacity), with the decoding probability vanishing inverse polynomially in N and ε
(under conditions of our theorem), then there exists another such family of codes Ccont with
the decoding error probability vanishing exponentially in N . Moreover, if the decoding time
complexity of the codes Cin is polynomial in N and 1/ε, then the decoding time complexity
of the codes Ccont is linear in N and polynomial in 1/ε.

The structure of this chapter is as follows. In Section 3.2, we describe the basic in-
gredients in our construction. The main result of this chapter appears in Section 3.3: we
present a sufficient condition for the existence of a family of codes with the decoding error
probability vanishing exponentially fast. We also analyze the decoding time complexity of
the presented codes. Finally, in Sections 3.4 and 3.5, we show that the codes in [10] and [8],
when decoded by known algorithms, cannot be tuned to have decoding error probability that
decreases exponentially fast (in terms of N), while the respective decoding algorithms have
time complexity linear in N and polynomial in 1/ε.

3.2 Preliminaries

3.2.1 Capacity-achieving codes with fast decoding

In this section we assume the existence of some (family of) linear code Cin, which achieves
the capacity C of a BSC, and which has a fast decoding algorithm. We denote its rate
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Rin = (1−ε)C, and its length nin (constant for a fixed ε). Below, we discuss the parameters
of this code.

Decoding complexity: we assume that the decoding complexity of Cin over the BSC is
given by

O

(
ns

in ·
1

εr

)
, (3.1)

where s, r ≥ 1 are some constants. Let Din be a decoder that has a time complexity as
in (3.1).

Based on the results in [54], [65], [67], several LDPC-type code families (with respective
message-passing decoding algorithms) do have such decoding complexity over the BEC
(for s = 1). There are no such results known for the BSC, although in light of the
surveyed works, this assumption sounds reasonable for LDPC-type codes over the BSC.

Decoding error probability: so far, there are no satisfying results on the asymptotical
behavior of the decoding error probability of LDPC-type codes over the BEC under
the message-passing decoding, for rates near capacity of the BEC. The behavior of
the decoding error probability of LDPC-type codes over other channels is even less
investigated. In the sequel, we obtain a sufficient condition on the probability of the
decoding error Probe(Cin) of the decoder Din (for the Cin) to guarantee the existence
of a code with an exponentially-fast decreasing error probability.

Note: the results presented in the sequel are valid for any code Cin whose decoding time
complexity and decoding error probability are as stated above. However, LDPC-type
codes are very promising candidates to meet these conditions, and in fact we do not
see any other candidate at the present moment. Since there is no such candidate, it
makes sense to speak about LDPC-type codes in this context.

3.2.2 Nearly-MDS expander codes

In this section, we consider linear-time decodable codes of rate 1 − ǫ (for small ǫ > 0) that
can correct a fraction ϑǫb of errors, where ϑ > 0, b > 0 are constants. There are several
code families known to date that can be shown to have the above property, and at the same
time allow linear-time (in the code length) decoding. In this connection, the reader can refer
to [8], [10], [38], [79], [84]. However, as of yet, the codes in Chapter 2 have the best relations
between their rate, minimum distance and alphabet size among all known expander-based
linear-time decodable codes. Moreover, unlike the codes Chapter 2, not all aforementioned
codes have decoding time complexity which is polynomial in 1/ǫ.

In the sequel, we use the codes CΦ defined as in (2.4) with the constituent codes CA and
CB taken as GRS codes. The parameters of the codes CA and CB will be defined later in this
section.
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Definition. An infinite sequence {ai}∞i=1, ai
i→∞−→ +∞, ai ∈ R, is called a dense sequence

of values if a1 ≤ 100 and ai+1 − ai = o(ai) (for i → ∞). (The number 100 is a large
absolute constant, the condition a1 ≤ 100 ensures that not all elements in the sequence are
exponentially large.)

Let γG be defined as in Chapter 2. It was shown in Section 2.2 that the code CΦ has
relative minimum distance as in Theorem 2.2.1, and the rate of CΦ is given in (2.6).

A linear-time decoding algorithm DΦ of CΦ was presented in Figure 2.1 in Section 2.3.
It corrects any pattern of ϑ errors and ρ erasures such that ϑ + 1

2
ρ < βn, where β is as in

Theorem 2.3.1. The number of iterations m in the algorithm is such that m = O(logn).

Recall that in Figure 2.1 it is required that the decoder DA is a mapping F∆ → CA that
recovers correctly any pattern of less than δA∆/2 errors over F, and the decoder DB is a
mapping (F ∪ {?})∆ → CB that recovers correctly any pattern of a errors and b erasures,
provided that 2a + b < δB∆. The decoders DA and DB are polynomial-time, for example
a Berlekamp-Massey decoder can be used for both of them. It can be implemented then in
time O(∆2).

In the next proposition, we show that the parameters of the codes CΦ of rate 1− ǫ can
be tuned to correct ϑ′ǫ errors (ϑ′ > 0 is a constant) for a sequence of alphabets.

Proposition 3.2.1 For any ǫ ∈ (0, 1), and for a sequence of alphabets {Φi}∞i=1 such that
the sequence {log2 |Φi|}∞i=1 is dense, the codes CΦ (as above) of rate RΦ ≥ 1− ǫ (with decoder
DΦ) can correct a fraction ϑ′ǫ of errors, where ϑ′ > 0 is some constant.

Proof. There is a dense sequence of values ∆ ∈ {∆i}∞i=1 such that there exists a family
of ∆-regular bipartite Ramanujan graphs G (see [53], [62]). For any such value ∆, we can
take both codes CA and CB to be GRS codes of length ∆ over an alphabet of size |F| ≥ ∆,
rate rA = rB = 1− ǫ/2 and relative minimum distance δA = δB = ǫ/2. Consider a code CΦ

defined with respect to these CA and CB. The rate RΦ of CΦ satisfies RΦ ≥ rA+rB−1 = 1−ǫ.
From Theorem 2.3.1, the fraction of errors that the decoder DΦ can correct is given by

β =
δB/2− γG

√
δB/δA

1− γG
≥ ǫ/4− γG
= ǫ/4− 2

√
∆− 1/∆

≥ ǫ/4− 2/
√

∆ .

Take any ∆ such that ∆ > (16/ǫ)2: for such ∆,

β > ϑ′ǫ , where ϑ′ = 1/8 .
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Next, we observe that |Φi| = ∆∆irA
i . Based on the density of {∆i}∞i=1, we show that the

sequence {log2 |Φi|}∞i=1 is dense as well. Indeed, for any i ∈ N,

lim
i→∞

log2 |Φi+1| − log2 |Φi|
log2 |Φi|

= lim
i→∞

∆i+1 log2 ∆i+1 −∆i log2 ∆i

∆i log2 ∆i

= lim
i→∞

(
∆i+1 log2 ∆i+1

∆i log2 ∆i

)
− 1

= lim
i→∞

(
∆i + o(∆i)

∆i
· log2(∆i + o(∆i))

log2 ∆i

)
− 1

= 1 − 1 = 0 .

Finally, from [53] and [62], ∆1 can be taken small enough, such that log2 |Φ1| < 100, as
required.

3.3 Main results of this chapter

3.3.1 General settings

Consider a BSC with crossover probability p, and let R = C(1− ε) be a design rate. Take F

to be GF(q), q = 2ℓ, ℓ ∈ N. Let Cin be a binary code of length nin assumed in Section 3.2.1.
It can also be seen as a linear code of length nin = nin/ℓ over (GF(2))ℓ. Let CΦ be a linear
code of length n and rate RΦ over an alphabet Φ = FRinnin . Pick some linear one-to-one
mapping E0 : Φ → Cin. Let Ccont be a code, corresponding to a concatenation of the code
Cin (as an inner code) with the code CΦ (as an outer code), as defined in Section 1.2.7.
Suppose Rcont ≥ R is a rate of the (binary) code Ccont and Ncont = n · nin is its length.
Denote by Probe(Ccont) its error probability, under the decoding by Dcont.

The following lemma is based on the result in [30, Chapter 4.2].

Lemma 3.3.1 The error probability of the code Ccont (as defined in this section) un-
der the decoding by Dcont, when the error probability of the decoder Din for the code Cin is
Probe(Cin), and the decoder DΦ corrects any pattern of less than βn errors, is bounded by

Probe(Ccont) ≤ exp{−n · E} = exp

{
−Ncont ·

E

nin

}
,

where E is a constant given by

E = −β ln (Probe(Cin))− (1− β) ln (1− Probe(Cin))

+β ln (β) + (1− β) ln (1− β) . (3.2)
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If the right-hand side of (3.2) is negative, we assume that E is zero.

The proof of this lemma appears in Appendix A.

Remark. It is possible to improve the error exponent by a constant factor by allowing
the decoder for the code Cin to output an “erasure” message in case of unreliable decoding
of the code Cin. See [30, Chapter 4.2] for details. We omit this analysis for the sake of
simplicity.

3.3.2 Sufficient condition

In this section, we derive a sufficient condition on the probability of decoding error of the
code Cin for providing a positive error exponent for the code Ccont as defined in section 3.3.1.
Below, we use the notation Cin [Rin, nin] for the code Cin of rate Rin and length nin.

Theorem 3.3.2 Consider a BSC with crossover probability p and capacity C = C2(p).
Suppose that the following two conditions hold:

(i) There exist constants b > 0, ϑ′ > 0, ε1 ∈ (0, 1), such that for any ǫ, 0 < ǫ < ε1, and for
a sequence of alphabets {Φi}∞i=1 where the sequence {log2 |Φi|}∞i=1 is dense, there exists
a family of codes CΦ of rate 1 − ǫ (with their respective decoders) that can correct a
fraction ϑ′ǫb of errors.

(ii) There exist constants ε2 ∈ (0, 1) and h0 > 0, such that for any ǫ, 0 < ǫ < ε2 , the
decoding error probability of a family of codes Cin satisfies

Probe

(
Cin
[
(1− ǫ)C, 1

ǫh0

])
< ǫb .

Then, for any rate R < C, there exist a family of codes Ccont as defined in Section 3.3.1 (with
their respective decoders) that has an exponentially decaying (in Ncont) error probability.

Proof. Let R = (1 − ε)C be a design rate of the code Ccont, and ε > 0 be small (namely,
ε < min{ε1, ε2}). Let κ be a constant, 0 < κ < 1, which will be defined later, and let the
rate of the code Cin be Rin = (1− κ ε)C. We set the rate of CΦ as

RΦ =
R
Rin

=
1− ε
1− κε = 1− (1− κ)ε−Θ(ε2) .

Then, by condition (i), the fraction β of errors correctable by the code CΦ is at least β ≥
ϑ′((1− κ) · ε)b.
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For an alphabet Φ, the length nin of the code Cin is given by

nin =
log2 |Φ|
Rin

.

We select the smallest Φ ∈ {Φi}∞i=1 such that

log2 |Φ| ≥
1

(κε)h0
,

and, so,

nin >
1

(κε)h0
, (3.3)

Next, we use Lemma 3.3.1 to evaluate the decoding error probability of the code Ccont.
It holds for small positive values of β that

(1− β) ln(1− β) > −β ,

and thus, from Lemma 3.3.1 we obtain (by ignoring the positive term −(1 − β) ln(1 −
Probe(Cin)) in (3.2)),

Probe (Ccont) < exp {−n · (−β ln (Probe(Cin)) + β ln β − β)}

= exp

{
−Ncont

β

nin

(ln β − ln (Probe(Cin))− 1)

}
.

In order to have a positive error exponent, we require that

ln β − ln (Probe(Cin))− 1 > 0 ,

or, equivalently,
β > e · Probe(Cin) , (3.4)

where e = 2.718 · · · .
The decoding error probability of the selected code Cin satisfies:

Probe (Cin [(1− κε)C, nin]) < Probe

(
Cin
[
(1− κε)C, 1

(κε)h0

])

< (κε)b ≤ ϑ′((1− κ)ε)b

e
, (3.5)

where the first inequality is due to (3.3), the second inequality follows from condition (ii),
and the third inequality can be satisfied by a selection of a small constant κ such that
κb ≤ ϑ′(1− κ)b/e.

The inequality (3.5) implies (3.4), as required.
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Example 3.3.1 Suppose that the decoding error probability of the code Cin of rate
Rin = (1− ε)C and length nin (for some decoder) is bounded by

Probe(Cin) <
1

nin
· 1

ε4
.

We choose h0 = b + 5 (where b is as in condition (i) of Theorem 3.3.2). There obviously
exists ε2 such that for every 0 < ǫ < ε2, for a code Cin of length nin = 1/ǫh0 and rate
Rin = (1− ǫ)C,

Probe(Cin) <
1

nin

· 1

ǫ4
= ǫh0 · 1

ǫ4
= ǫb+1 < ǫb . (3.6)

From the expression (3.6) we see that condition (ii) of Theorem 3.3.2 is satisfied. This
selection yields the existence of a positive error exponent for the code Ccont.

Example 3.3.2 Suppose that the decoding error probability of the code Cin (of rate
Rin = (1− ε)C and length nin) is bounded by

Probe(Cin) < e−ninε2

.

We choose h0 = 3. There obviously exists ε2 such that for every 0 < ǫ < ε2, for the code Cin
of length nin = 1/ǫh0 and rate Rin = (1− ǫ)C, and for every b > 0,

Probe(Cin) < e−ninǫ2 = e−(ǫ2/ǫ3) = e−(1/ǫ) < ǫb ,

and therefore Theorem 3.3.2 yields existence of a positive error exponent for the code Ccont.

Example 3.3.3 In this example, we consider a specific case of decoding error probability
for the code Cin. Theorem 3.3.2 can be directly applied in this case. However, we conduct a
direct minimization of the decoding error probability of the code Ccont, which is obtained by
concatenation of the code CΦ in Chapter 2 with the assumed code Cin, and obtain an analyt-
ical expression on the error exponent. We show that the overall decoding error probability
for this code Ccont has a positive error exponent.

Suppose that the decoding error probability for some inner code Cin over the BSC with
crossover probability p < H−1

2 (1−Rin) and some polynomial decoder is given by:

Probe(Cin) ≤ 1

nt
in

,

where t is a constant, t ≥ 1.

Below, we make a selection of parameters for the code Ccont. This selection allows us to
estimate the decoding error exponent as a function of ε.
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Let R = (1 − ε)C be a design code rate. Pick the rate of Cin to be Rin = (1 − κ ε)C,
where κ ∈ (0, 1) is a constant. Then, we can write

R
Rin

=
C(1− ε)

C(1− κ ε) ≥ 1− (1− κ)ε−Θ(ε2) .

Next, we select the parameters of the code CΦ in Chapter 2, which serves as an outer code.
Take CA and CB as GRS codes over F, with |F| = ∆. We fix δB = 1 − (R/Rin) − δA =
η(1− (R/Rin)), where η ∈ (0, 1) (and thus, δA = (1− η)(1−R/Rin)), and select the degree
∆ of the graph G as ∆ = ̺/ε2, where ̺ is a constant such that

̺ >
16

η(1− η)(1− κ)2
.

We have,

RΦ ≥ rA + rB − 1 = 1− δA − δB = R/Rin .

By our selection (see (1.1)),

γG ≤
2√
∆

=
2ε√
̺
.

We obtain from (2.10),

β > (δB/2)− γG
√
δB/δA > ϑ′ε+ o(ε) , (3.7)

where

0 < ϑ′ =
η(1− κ)

2
− 2

√
η

̺(1− η)
is a constant which depends only on κ, η and ̺.

The number of bits needed to represent each symbol of Φ is log2 |Φ| = rA∆ · log2 |F|.
Recall that rA = 1− O(ε). Therefore, the length nin of the binary code Cin is given by

nin =
rA∆

Rin
· log2(∆)

=
(1−O(ε))̺

Rin ε2
· log2

( ̺
ε2

)

=
̺ log2(̺/ε

2)

Rin ε2
+ o

(
̺ log2(̺/ε

2)

Rin ε2

)
, (3.8)

and thus, by ignoring the small term, the decoding error probability of Cin is

Probe(Cin) ≤
(

ε2Rin

̺ log2(̺/ε
2)

)t

. (3.9)
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We substitute the expressions in (3.7) (only the main term) and (3.9) into the result of
Lemma 3.3.1 to obtain

Probe(Ccont) < exp

{

− n
(

− ϑ′ε · t ln
(

ε2Rin

̺ log2(̺/ε
2)

)

− (1− ϑ′ε) ln

(

1−
(

ε2Rin

̺ log2(̺/ε
2)

)t
)

+ ϑ′ε ln (ϑ′ε) + (1− ϑ′ε) ln (1− ϑ′ε)
)}

. (3.10)

Note that for small ε > 0,

ln(1− ϑ′ε) = −ϑ′ε+O(ε2) ,

and

ln

(
1−

(
ε2Rin

̺ log2(̺/ε
2)

)t
)

= −o(ε2t) .

Hence Equation (3.10) (when neglecting o(ε) terms) becomes

Probe(Ccont) < exp

{
− nϑ′ε

(
− t ln

(
ε2Rin

̺ log2(̺/ε
2)

)
+ ln (ϑ′ε)− 1

)}

= exp

{
−Ncontϑ

′ε

nin
· ln
(
ϑ′ε · ̺t(log2(̺/ε

2))t

e · ε2tRt
in

)}
.

Using substitution of the expression (3.8) for nin, the latter equation can be rewritten as

Probe(Ccont) < exp

{
− Ncontϑ

′ε · ε2Rin

2̺ (log2(1/ε) + Θ(1))
·

(
(2t− 1) ln(1/ε) + t ln(1/Rin) + t ln ln(1/ε) + Θ(1)

)}
. (3.11)

The dominating term in the expression

(2t− 1) ln(1/ε) + t ln(1/Rin) + t ln ln(1/ε) + Θ(1)

is (2t− 1) ln(1/ε). By taking into account that Rin = C(1 − O(ε)), Equation (3.11) can be
rewritten, when ignoring all but the main term, as

Probe(Ccont) < exp

{
−Ncont ·

(
(2t− 1)ϑ′ ε3 C

2̺ · log2 e
+ o(ε3)

)}
.

Thus, the decoding error probability is given by

Probe(Ccont) < exp{−Ncont · E(C, ε)} ,
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where

E(C, ε) = max
̺,ϑ′

{
ϑ′

̺

}
· (2t− 1) C

2 · log2 e
· ε3

= max
κ, η, ̺

{
η(1− κ)

2̺
− 2

√
η

̺3(1− η)

}
· (2t− 1) C

2 · log2 e
· ε3 , (3.12)

and the parameters (κ, η, ̺) are taken over

κ ∈ (0, 1) ; η ∈ (0, 1) ; ̺ >
16

η(1− η)(1− κ)2
. (3.13)

Next, we optimize the value of the constant

Υ = max
κ, η, ̺

{
η(1− κ)

2̺
− 2

√
η

̺3(1− η)

}
.

It is easy to see that the maximum is received for κ → 0. We substitute κ = 0 in the
expression (3.12) to obtain

Υ = max
η, ̺

{
η

2̺
− 2

√
η

̺3(1− η)

}
. (3.14)

By taking a derivative of Υ over ̺ and comparing it to zero, we obtain that

̺ =
36

η(1− η) .

By substituting it back to the expression (3.14) and finding its maximum, we have η = 2/3
and ̺ = 162. These values obviously satisfy condition (3.13). The appropriate value of Υ is
then

Υ =
η

2̺
− 2

√
η

̺3(1− η) =
2/3

2 · 162
− 2

√
2/3

1623 · (1/3)

=
1

1458
= 6.8587 · 10−4 .

Finally, we have

E(C, ε) =
(2t− 1) C

2916 · log2 e
· ε3 .

Figure 3.1 shows the value of the error exponent E(C, ε) in the example for t = 1, 2 and 3.
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Figure 3.1: Error exponent E(C, ε) for the code Ccont.

Selection: Probe(Cin) = 1/nt
in; C = 0.8; t = 1, 2, 3 (bottom to top).

3.3.3 Decoding complexity

In this section, we show that under the assumption in Section 3.2.1 on the decoding time
complexity of the code Cin, and if the parameters of the codes are selected as in the proof of
Theorem 3.3.2, then the decoding time complexity of the respective code Ccont is linear in
the overall length Ncont and inverse polynomial in the gap ε from capacity.

Theorem 3.3.3 Consider a BSC with crossover probability p and capacity C = C2(p).
Let R = (1− ε)C be a design rate. Suppose that the following two conditions hold:

(i) Let CΦ be a (family of) code defined in Section 3.2.2 of rate RΦ = (1 − ε)/(1 − κε),
κ ∈ (0, 1) is a constant, over the smallest alphabet Φ satisfying log2 |Φ| ≥ 1/(κε)h0

from a dense sequence {log2 |Φi|}∞i=1, and h0 > 0 is a constant.

(ii) Let Cin be a code of rate Rin = (1 − κε)C with a decoding complexity over a BSC of
capacity C given by

O

(
ns

in ·
1

εr

)
,

where s, r ≥ 1 are some constants.

Then, the time complexity of the respective code Ccont, when decoded by Dcont, is given by

Ncont · Poly(1/ε) .
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Proof. Below we count the total number of operations when decoding the code Ccont by
the decoder Dcont. There are two main steps.

• Step 1: n applications of the decoder Din to the binary word of length nin.

• Step 2: one application of the decoder DΦ to the word of length n over Φ.

In addition, there are n applications of each of the mappings E0 and E−1
0 .

We separately count the number of operations during each step.

• Step 1: By the assumption on the decoding complexity of Din, n applications of this
decoder result in time

O

(
n · ns

in ·
1

εr

)
= O

(
Ncont · ns−1

in ·
1

εr

)
. (3.15)

From the definition of Ccont, nin = log2 |Φ| /Rin, so, we have

nin =
log2 |Φ|

(1− κε)C .

By using the density of values of log2 |Φ|, we have log2 |Φ| ∈ Poly(1/ε), thus yielding
nin ∈ Poly(1/ε). By substitution into (3.15), we obtain that the time complexity of
Step 1 is Ncont · Poly(1/ε).

• Step 2: it is shown in Lemma B.1 that the number of applications of the decoders DA

and DB on the word of CΦ of length n over Φ is bounded by ω · n, where

ω = 2 ·





ln

(
∆β
√
σ

β − σ
)

ln

(
δAδB
4γ2

G

)





+
1 +

δA
δB

1−
(

4γ2
G

δAδB

)2 ,

and σ is an actual number of errors in the word. Thus, if the ratio σ/β is bounded
away from 1, and G is a Ramanujan graph, then the value of ω is bounded from above
by an absolute constant (independent of ∆).

The decoders DA and DB are applied to words of length ∆ ∈ Poly(1/ε). When
classical decoders for GRS codes are used (such as Berlekamp-Massey), their complexity
is polynomial in 1/ε. Therefore, the decoding complexity in Step 2 is bounded by

n · Poly(1/ε) ≤ Ncont · Poly(1/ε) .
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Each application of the mapping E0 or E−1
0 is equivalent to multiplication of a vector by

a matrix, where the number of rows and columns in the matrix is Poly(1/ε). This can be
done in time Poly(1/ε).

Summing up the decoding complexities of all steps of the decoder, we obtain that the
total number of operations is bounded by

Ncont · Poly(1/ε) .

Note. The result in Theorem 3.3.3 is still valid if the outer code CΦ is replaced by any
other code of rate 1 − Θ(ε), whose decoding time complexity is linear in n and polynomial
in 1/ε, for a sequence of alphabets {Φ}∞i=1 such that {log2 |Φi|}∞i=1 is a dense sequence.

3.4 Time complexity of decoder in [10]

Similarly to Section 3.3, assume in this and the next sections that C is the capacity of the
BSC with crossover probability p, and the design code rate is R = (1− ε)C. Our purpose is
to compare the parameters of the codes from Section 3.3 with the codes presented by Barg
and Zémor in [10] and [8] (with their respective decoding algorithms). In the sequel we show
that the parameters of the codes from [10] and [8] cannot be modified such that the decoding
time complexity is only sub-exponential in 1/ε while keeping a non-zero error exponent. The
reason is this: both decoding algorithms in [10] and [8] make use of sub-routines (decoders for
small constituent codes) that have time complexity exponential in the degree of underlying
expander graph. This degree, in turn, depends (at least) polynomially on 1/ε.

3.4.1 Analysis: binary codes

Consider the codes CBZ2 in [10] with their corresponding decoder, as defined in Section 1.4.3.
The analysis of the codes CBZ2 is divided into two cases. In this section, we consider the
case where the codes CA and CB are over F = GF(2). In the next section, the analysis is
generalized toward alphabet sizes which are large powers of 2.

In the binary case, following the analysis of [10], it is possible to show that for the code
CBZ2 with the decoder DBZ2, the decoding error probability, Probe(CBZ2), is bounded by

Probe(CBZ2, p) ≤ exp{−αNf3(R, p)} ,

where 0 < α < 1, and the main term of f3(R, p) is less than or equal to

max
R≤R0<C

{
E0(R0, p)

(
H

−1
2 (R0−R)

2
−Θ

(
1√
∆

))}
, (3.16)
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and E0(R0, p) is the random coding exponent for rate R0 over the BSC with crossover prob-
ability p.

Proposition 3.4.1 If the codes CBZ2 (binary, as assumed in this section), have a positive
error exponent under the decoding by DBZ2, then ∆ = Ω

(
1/(H−1

2 (ε))2
)
.

Proof. In order to have a positive error exponent it is needed that

H−1
2 (R0 −R)

2
−Θ

(
1√
∆

)
> 0 .

Observe that R0 −R ≤ C−R = Cε ≤ ε. It follows from (3.16) that

1
2
H−1

2 (ε) ≥ 1
2
H−1

2 (R0 −R) > Θ
(
1/
√

∆
)
,

and thus ∆ = Ω
(
1/(H−1

2 (ε))2
)
.

It is suggested in [10] to use maximum-likelihood decoding for the codes CA and CB . The
known maximum-likelihood decoding algorithms, however, have per-bit time complexity at
least

exp{Ω(∆)} = exp{Ω
(
1/(H−1

2 (ε))2
)
} .

3.4.2 Analysis: codes over large alphabets

Suppose that F = (GF(2))ℓ, ℓ ∈ N, and the codes CA and CB are chosen to satisfy properties
(a)-(c) of Case 2 in Section 1.4.3. Then, for the code CBZ2 under the decoding by DBZ2, the
decoding error probability Probe(CBZ2) is bounded by

Probe(CBZ2, p) ≤ exp{−αNf2(R, p)} ,
and the main term of f2(R, p) is less than or equal to

max
R≤R0<C

{
E0(R0, p)

(
R0−R

2
−Θ

(
1√
∆

))}
.

In this case, Proposition 3.4.1 can be rewritten as:

Proposition 3.4.2 If the codes CBZ2 (over large F, as assumed in this section) have a
positive error exponent under the decoding by DBZ2, then ∆ = Ω (1/ε2).

The proof is very similar to that of Proposition 3.4.1.

When using known maximum-likelihood decoders for the codes CA and CB, the decoding
time complexity is at least

exp{Ω(∆)} = exp{Ω
(
1/ε2

)
} .
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3.5 Time complexity of decoder in [8]

Consider the codes CBZ3 in [8] with their corresponding decoder, as defined in Section 1.4.4.
In the sequel, we analyze the decoding time complexity of these codes.

Lemma 3.5.1 Let p satisfy 0 < p < 1
2
, and let 0 < ε≪ p. Then,

H−1
2 (H2(p) + ε(1− H2(p))) = p+

ε(1− H2(p))

log2 ((1− p)/p)

− ε2(1− H2(p))
2 log2 e

2p(p− 1) (log2 ((1− p)/p))3 +O(ε3).

The proof of this lemma appears in Appendix D.

Proposition 3.5.2 Let C = C2(p) be capacity of a BSC with crossover probability p. The
decoding error probability of a random code of rate R = (1− ε)C, under maximum-likelihood
decoding, behaves as exp{−Θ(ε2)} when ε→ 0.

Proof. We start with the well-known expression for the probability exponent of the decoding
error of a random code under maximum-likelihood decoding [34], [35]:

E0(R, p) =






T (δ, p) +R− 1 if Rcrit ≤ R < C

1− log2

(
1 +

√
4p(1− p)

)
−R if Rmin ≤ R < Rcrit

−δ log2

√
4p(1− p) if 0 ≤ R < Rmin ,

where Rmin and Rcrit are some threshold rates,

δ = δGV (R) = H−1
2 (1−R) ,

and
T (x, y) = −x log2 y − (1− x) log2(1− y) .

At code ratesR which are close to C, the relevant expression for the random coding exponent
becomes

E0(R, p) = T (δ, p) +R− 1 . (3.17)

Next, we express all terms of the relevant part of (3.17) in terms of ε. We recall that
R = (1− ε)(1− H2(p)) and, thus,

H−1
2 (1−R) = H−1

2 (ε+ H2(p)− εH2(p)) .
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When disregarding the O(ε3) term, Equation (3.17) becomes

E0(R, p) = (1− ε)(1− H2(p))− 1 + T
(
H−1

2 (ε+ H2(p)− εH2(p)), p
)

(∗)
= −ε − (1− ε)H2(p) + T

(
p+

ε(1− H2(p))

log2((1− p)/p)

− ε2(1− H2(p))
2 log2 e

2p(p− 1) (log2((1− p)/p))3 , p

)

= −ε− (1− ε)H2(p)−
(
p+

ε(1− H2(p))

log2((1− p)/p)

− ε2(1− H2(p))
2 log2 e

2p(p− 1) (log2((1− p)/p))3

)
log2 p

−
(

1− p− ε(1− H2(p))

log2((1− p)/p)

+
ε2(1− H2(p))

2 log2 e

2p(p− 1) (log2((1− p)/p))3

)

log2(1− p)

= −ε(1− H2(p)) +
ε(1− H2(p))(− log2 p+ log2(1− p))

log2((1− p)/p)

+
ε2(1− H2(p))

2 log2 e(log2 p− log2(1− p))
2p(p− 1) (log2((1− p)/p))3

=
ε2(1− H2(p))

2 log2 e

2p(1− p) (log2((1− p)/p))2 = ε2 · cp ,

where cp > 0 is a constant that depends only on the crossover probability p of the channel.
Note that the transition (∗) follows from Lemma 3.5.1.

Proposition 3.5.3 If the codes CBZ3 have a positive error exponent, then ∆ = Ω(1/ε2).

Proof. It is shown in [8] that the decoding error probability of the code CBZ3, Probe(CBZ3),
satisfies

Probe(CBZ3) ≤ exp
{
−n∆lδ1(1 + α)−1 · (E0(R0, p)−Mα)(1− o(1))

}
,

where α is a constant defined in [8] (in paritcular, 1 > α > 2λ1/d1), and

M = M(R, p) =

{
1
2
log2((1− p)/p) if R ≤ Rcrit

log2

(
δGV (R)(1−p)
(1−δGV (R))p

)
if R ≥ Rcrit

;
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here δGV (R) = H−1
2 (1−R) is the Gilbert-Varshamov relative minimum distance for the rate

R, and Rcrit is a threshold rate (see [35] for details).

We are interested in small values of ε, i.e. R ≥ Rcrit. In this case, the value of M(R, p)
can be rewritten as

M(R, p) = log2

(
δGV (R)(1− p)
(1− δGV (R))p

)

= log2

(
H−1

2 (1−R)(1− p)
(1− H−1

2 (1−R))p

)

= log2

(
H−1

2 (H2(p) + ε− εH2(p))(1− p)
(1− H−1

2 (H2(p) + ε− εH2(p)))p

)
, (3.18)

where the last transition is due to R = (1 − H2(p))(1 − ε). Using Lemma 3.5.1, the equal-
ity (3.18) becomes

M(R, p) = log2

(
p+ ε(1−H2(p))

log2((1−p)/p)
− 1

2
· ε2(1−H2(p))2 log2 e

p(p−1)(log2((1−p)/p))3

)
(1− p)

(
1− p− ε(1−H2(p))

log2((1−p)/p)
+ 1

2
· ε2(1−H2(p))2 log2 e

p(p−1)(log2((1−p)/p)))3

)
p

+O(ε3) .

When ignoring the terms of ε2 and highest powers of ε, and denoting θ = ε(1−H2(p))
log2((1−p)/p)

, this

equation becomes

M(R, p) = log2

(
p+ θ

1− p− θ ·
1− p
p

)
+O(θ2)

= log2

(
1 + θ/p

1− θ/(1− p)

)
+O(θ2)

= log2 ((1 + θ/p)(1 + θ/(1− p))) +O(θ2)

= log2 (1 + θ/p+ θ/(1− p)) +O(θ2) .

Using Taylor’s series for ln(·) around 1 we obtain

M(R, p) = log2 e ·
(
θ

p
+

θ

(1− p)

)
+O(θ2)

=
log2 e

p(1− p) · θ +O(θ2) ,

and switching back to ε notation this becomes

M(R, p) =
log2 e

p(1− p) ·
ε(1− H2(p))

log2 ((1− p)/p) +O(ε2) = Θ(ε) . (3.19)

Next, we estimate the value of α. Recall that α > 2λ1/d1, and d1 ≤ ∆1 ≤ ∆. We have

α >
2λ1

d1
≥ 4
√

∆1 − 1

∆1
≥ 4
√

∆− 1

∆
= Θ

(
1√
∆

)
.
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In order to have a positive error exponent it is necessary that

E0(R0, p)−Mα > 0 ⇒ E0(R0, p)

M
> α

⇒ E0(R0, p)

M
> Θ

(
1√
∆

)
.

Using Proposition 3.5.2, E0(R0, p) = Θ(ε2), and thus from (3.19)

ε = Ω(1/
√

∆) ⇒ ∆ = Ω(1/ε2) .

Assuming that the first two decoding iterations are as suggested in [8], we conclude that
the time complexity of the decoding is exp{Ω(∆)} = exp{Ω(1/ε2)}.
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Chapter 4

Generalized Expander Codes

In this chapter, we generalize the codes defined in Chapter 2. The codes therein, for every
vertex in the set A (or B), have the same set of constraints defined by the code CA (or CB).
By contrast, for the codes described in this chapter, there is more than one different set of
constraints for the vertices in the set A (or B). We call such codes generalized expander
codes. In the sequel, we analyze the parameters of these codes. Moreover, we present a
linear-time decoding algorithm for the above codes. Finally, we show that the binary codes
derived from the presented codes have a minimum distance at least as good as the minimum
distance of the codes of Barg and Zémor [9], for a broad range of code rates.

4.1 Construction of generalized expander codes

Let G = (A : B,E) be a bipartite ∆-regular undirected connected graph with a vertex set
V = A ∪ B such that A ∩ B = ∅, and an edge set E such that there are no parallel edges
in it, and every edge has one endpoint in A and one endpoint in B. We denote the size of
A by n (clearly, n is also the size of B) and we will assume hereafter without any practical
loss of generality that n > 1. We divide B into two sets, B1 and B2, such that B1 ∩B2 = ∅,
B1 ∪ B2 = B. Let |B2| = ηn, and thus |B1| = (1− η)n. The value η ∈ [0, 1] will be defined
in the sequel.

As before, for every vertex u ∈ V , we denote by E(u) the set of edges that are incident
with u. We assume an ordering on V , thereby inducing an ordering on the edges of E(u) for
every u ∈ V . For a word z = (ze)e∈E over an alphabet F we denote by (z)E(u) the sub-block
of z that is indexed by E(u). For a vertex u ∈ V and a subset S ⊆ V we denote by degS(u)
the degree of u in the graph induced from G by the vertex set S.

Let F be the field GF(q) and let CA, C1 and C2 be linear [∆, rA∆, δA∆], [∆, r1∆, δ1∆]
and [∆, r2∆, δ2∆] codes over F, respectively. Below, we generalize the code C presented in
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Section 2.1. In Section 2.1, for any codeword c ∈ C, for any vertex u ∈ B, the vectors (c)E(u)

belong to the same constituent code CB. In the current section, for any codeword c ∈ C, the
sub-word (c)E(u) is in the code C1 if u ∈ B1, and (c)E(u) is in C2 if u ∈ B2, where C1 6= C2.

More specifically, we define the code C = (G, CA, C1, C2) as the following linear code of
length |E| over F:

C =
{

c ∈ F
|E| : (c)E(u) ∈ CA for every u ∈ A, (c)E(u) ∈ C1 for every u ∈ B1

and (c)E(u) ∈ C2 for every u ∈ B2
}

(for η = 0, 1 or, alternatively, for C1 = C2, the code C defined herein coincides with its
counterpart defined in Section 2.1).

4.2 Bounds on the code parameters

Let C = (G, CA, C1, C2) and Φ be as defined in Section 4.1. We estimate the rate R of the
code C by counting the number of parity-check equations. For each vertex in A, B1 and B2

there are n∆(1−rA), n∆(1−η)(1−r1) and n∆η(1−r2) parity-check equations, respectively.
Some of these equations, however, may be linearly dependent. Summing these expressions,
we obtain following bound on the rate of the code C,

(1−R)n∆ ≤ n∆ ((1− rA) + (1− η)(1− r1) + η(1− r2)) ,

which results in
R ≥ rA + (1− η)r1 + ηr2 − 1 . (4.1)

Denote by AG the adjacency matrix of G. Recall that ∆ is the largest eigenvalue of AG,
and denote by γG the ratio between the second largest eigenvalue of AG and ∆. Recall that
when G is taken from a sequence of Ramanujan expander graphs with constant degree ∆,
we have

γG ≤
2
√

∆−1

∆
.

Denote by N (u) the set of vertices in G adjacent to u.

We next turn to obtain several properties of the codewords of C.

Proposition 4.2.1 Suppose that δ1 ≥ δ2. For any non-zero codeword c of C consider the
following sequence Sc of sub-vectors of c: Sc =

(
(c)E(u)

)
u∈B

. Then the number of non-zero
(vector) entries in Sc is at least

n · δA − γG
√
δA/δ2

1− γG
.
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Proof. Define the code CΦ over Φ similarly to the definition in (2.4) with respect to the
code C as defined in this chapter.

Consider a word c in the code C. For every vertex u ∈ B, the sub-word (c)E(u) is a
codeword of a code of a relative minimum distance ≥ δ2. Then, for every vertex u ∈ B such
that (c)E(u) is not a zero vector, the number of non-zero entries in (c)E(u) is bounded from
below by δ2.

Theorem 2.2.1 deals with a case where for every vertex u ∈ B, the vectors (c)E(u) belong
to the same code CB. However, the proof of that theorem uses the property that for every
non-zero word c ∈ C, and for every vertex u ∈ B such that (c)E(u) is not a zero vector, the
number of non-zero entries in (c)E(u) is bounded from below by δB. This property is valid
also in the case of the code C defined in the present section (with δ2 = δB). Thus, all the
steps of the proof of Theorem 2.2.1, with δB = δ2 are valid also in the present case, and it
follows that the relative minimum distance of the code CΦ over Φ is bounded from below by

δA − γG
√
δA/δ2

1− γG
.

This immediately yields the required conclusion.

Proposition 4.2.2 Let S be a subset of either A or B. Denote σ = |S|/n and JS(u) =
|S ∩N (u)|. Let U = A if S ⊆ B and U = B if u ⊆ A. Then

1

n

∑

u∈U

(JS(u)− σ∆)2 ≤ γ2
G∆2σ(1− σ) . (4.2)

Proof. The proof of this proposition appears as a guided exercise in [73, Problem 13.22].

Theorem 4.2.3 Consider the code C over a field F with

η <
δA − γG

√
δA/δ2

1− γG
− γ2/3

G . (4.3)

Suppose that δ2 ≤ δ1. Then, the relative minimum distance δC of C satisfies

δC > δA(δ1 − 1
2
γ

2/3
G ) . (4.4)

Proof. First, it is easy to see that C is a linear subspace over F, and thus the minimum
distance of C equals the minimum weight of any non-zero codeword of C.

Pick any non-zero codeword c ∈ C. Denote by Y ⊆ E the support of c, i.e.,

Y = {e ∈ E : ce 6= 0} .
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Let S and T be the sets of all vertices in A and B, respectively, that are endpoints of edges
in Y . Let σ and τ denote ratios |S|/n and |T |/n, respectively.

Next, we observe that using Proposition 4.2.2, the number ξ of vertices u ∈ B for which

|JS(u)− σ∆| ≥ ρ∆
√
σ(1− σ) ,

for any ρ ∈ (0, 1), satisfies

ξ

n

(
ρ∆
√
σ(1− σ)

)2

≤ γ2
G∆2σ(1− σ) .

It follows that
ξ

n
≤ γ2

G
ρ2

. (4.5)

Since for any σ ∈ [0, 1],
√
σ(1− σ) ≤ 1

2
, we obtain that the number of vertices u ∈ T for

which

|JS(u)− σ∆| ≥ ρ∆

2
, (4.6)

is less than or equal to ξ (for any ρ ∈ (0, 1)). Note that the next equation yields Equa-
tion (4.6):

JS(u) ≥ σ∆ +
ρ∆

2
. (4.7)

Pick ρ = γ
2/3
G . We obtain that every vertex in T , except at most γ

2/3
G n vertices, has less

than σ∆ + 1
2
γ

2/3
G ∆ neighbors in S. Using Proposition 4.2.1, the relative size of T , τ , is at

least

τ ≥ δA − γG
√
δA/δ2

1− γG
. (4.8)

There are at least n(τ−η−γ2/3
G ) vertices in T∩B1 that have less than σ∆+ 1

2
γ

2/3
G ∆ neighbors

in S. Using (4.3) and (4.8), there is at least one such vertex; denote it by v.

All edges e, such that e ∈ Y , have one endpoint in S. For the vertex v, the number of
non-zero edges incident with it is at least δ1∆. On the other hand, the number JS(v) of

neighbors (in S) of the vertex v is less than σ∆ + 1
2
γ

2/3
G ∆. However, this number is greater

than or equal to the number of the non-zero edges incident with v (note that there are no
parallel edges in G); thus,

σ∆ + 1
2
γ

2/3
G ∆ > δ1∆ ,

yielding that
σ > δ1 − 1

2
γ

2/3
G . (4.9)

The required result is obtained by the observation that each vertex in S has at least δA∆
incident edges in Y .
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Next, we compare the code C with its counterpart presented in Chapter 2. It is shown in
Theorems 4.2.3 and 2.2.1 that the relative minimum distances are given by approximately
δAδ1 and δAδB for the code in this chapter and in Chapter 2, respectively, where δA, δ1 and
δB are the respective relative distances of the constituent codes. Take the constituent codes
C1 and CB to be equal. In such a case, the relative minimum distances of the code C and of
its counterpart in Chapter 2 are almost equal (for sufficiently large values of ∆).

On the other hand, the rates of the code C and of its counterpart in Chapter 2, respec-
tively, under the condition C1 = CB, are bounded from below by

rA + (1− η)rB + ηr2 − 1 ,

and

rA + rB − 1 ,

where rA, r1 = rB, r2 are the rates of the respective constituent codes (see Equalities (4.1)
and (2.5)). When 0 < η < 1 and r1 < r2, the rate of the code C defined in this section
is strictly larger than the rate of its counterpart defined in Chapter 2. Therefore, the code
in this chapter improves on the rate-distance ratio compared with the code C defined in
Chapter 2.

Example 4.2.1 Consider the graph G and the code C defined in Section 4.1. Select
some small ǫ > 0, and let ∆ ≥ 1/ǫ3 be an integer which is a feasible degree of a bipartite
Ramanujan graph in [53], [62]. Then,

γG =
2
√

∆− 1

∆
<

2√
∆
≤ 2ǫ3/2 .

Let F = GF(q) such that q = 2ℓ for some integer ℓ. We take the codes C1, C2 as GRS codes
over F (and thus δ1+r1 = δ2+r2 > 1). We also take the code CA as the code in Proposition 3
in [10], namely, CA is a linear code over F which can be viewed as a linear binary code, with
the following properties:

• The binary relative minimum distance, δ′A, of CA is bounded from below by

δ′A > H−1
2 (1− rA)− ε .

• The q-ary relative minimum distance, δA, of CA is bounded from below by

δA > 1− rA − ε ,

for sufficiently small value of ε.
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Fix δ2 = ǫ, and so r2 > 1− ǫ. Let η be very close (but slightly less than) the value

δA − γG
√
δA/δ2

1− γG
− γ2/3

G =
δA − 2ǫ3/2

√
δA/ǫ

1− 2ǫ3/2
− 22/3ǫ > δA − 4ǫ .

Then, using Equation (4.1), we have

R ≥ rA + (1− η)r1 + ηr2 − 1 > rA + (1− δA)r1 + (δA − 4ǫ)(1− ǫ)− 1 .

By taking ǫ→ 0 (and ignoring the vanishing terms), we obtain

R ≥ rA + rAr1 + δA − 1 = rAr1 .

Let c ∈ C be a non-zero codeword, and let S and σ be defined as in the proof of
Theorem 4.2.3 with respect to this c. The conditions of Theorem 4.2.3 are satisfied in this
case, and therefore, the equality (4.9) is implied. Then, the binary relative minimum distance
of the code C is bounded from below by (when ignoring the vanishing terms)

δC >
(
δ1 − 1

2
γ

2/3
G

)
· δ′A =

(
δ1 −

ǫ

21/3

)
· δ′A

ǫ→0−→ δ1δ
′
A ≥ (1− r1)H−1

2 (1− rA) .

Next, suppose that some design rate Rd > 0 is given. Let C1 be a code of rate r1 over F

that attains the Gilbert-Varshamov bound. By optimization over the rates of rA and r1, the
lower bound on the binary relative minimum distance of C becomes arbitrarily close to

max
Rd≤rA≤1

{(
1− Rd

rA

)
H−1

2 (1− rA)

}
,

namely, the code C attains the Zyablov bound.

4.3 Decoding

In this section we present the algorithm for decoding the generalized expander code C defined
in Section 4.1. The decoding algorithm has a time complexity linear in n, and is able to
correct a number of errors, which is almost half of the minimum distance given by the
bound (4.4).

The structure of this section is as follows. First, we define a puncturing of the code C

with respect to a subgraph of G. We present an algorithm that is able to correct a significant
number of errors for that punctured code. Next, we present an analysis of that algorithm,
which is mainly based on the analysis in Section 2.3. Then, we show how the above algorithm
can be used as a subroutine in order to correct many errors in the original code C. Finally,
we show the correctness of the decoding algorithm for the code C.
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4.3.1 Decoding of punctured expander code

In this section we consider a bipartite ∆-regular undirected connected graph G = (V,E)
with the vertex set V = A∪B such that A∩B = ∅, and an edge set E such that every edge
in E has one endpoint in A and one endpoint in B. Let |A| = |B| = n. Let F be the field
GF(q) and let γG be the ratio between the second largest eigenvalue of AG and ∆. Let C(u)
(for every u ∈ V ) be a linear code of length ∆ over F associated with the vertex u.

We define the code Ĉ = Ĉ(G) as the following linear code of length |E| over F:

Ĉ =
{
c ∈ F

|E| : (c)E(u) ∈ C(u) for every u ∈ V
}
.

Definition. Let G̃ = (Ṽ , Ẽ) be a subgraph of G, Ṽ ⊆ V , and Ẽ ⊆ E is an edge set
induced from E by the vertex set Ṽ . The punctured code Ĉp = Ĉp(G̃) with respect to the
graph G̃ is defined as

Ĉp(G̃) =
{
c̃ ∈ F

|Ẽ| : ∃c ∈ Ĉ s.t. ∀e ∈ Ẽ : c̃e = ce

}
.

Note that the puncturing of Ĉ induces puncturing of the codes C(u) for every u ∈ Ṽ .
We denote the resulting punctured codes by Cp(u) for every u ∈ Ṽ . Suppose the existence
of polynomial-time error-and-erasure decoders D(u) for the codes C(u), for every u ∈ V .
Polynomial-time error-and-erasure decoders Dp(u) for the codes Cp(u) (for every u ∈ Ṽ ) can
be efficiently constructed from the decoders D(u).

Definition. Let G̃ = (Ṽ , Ẽ) be a subgraph of G, such that Ṽ ⊆ V , and Ẽ ⊆ E is an
edge set induced from E by the vertex set Ṽ . Denote the corresponding punctured codes
(as above) by Cp(u) (for u ∈ Ṽ ). The subgraph code C̃p = C̃p(G̃) with respect to the code Ĉ

and the graph G̃ is defined as

C̃p(G̃) =
{

c̃ ∈ F
|Ẽ| : (c̃)Ẽ(u) ∈ Cp(u) for every u ∈ Ṽ

}
.

The following lemma follows immediately from the definitions of C̃p and Ĉp.

Lemma 4.3.1 The codes C̃p and Ĉp are related as follows:

Ĉp ⊆ C̃p .

In this chapter, we denote by Φ the set of vectors of length ∆ over F ∪ {?}. Define

one-to-one linear mappings (for every u ∈ Ṽ ∩A) Eu : (F ∪ {?})Ẽ(u) → Φ by

Eu(â) = a such that ae =

{
âe for e ∈ Ẽ(u)

0 for e ∈ E(u)\Ẽ(u)
.
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Let the mapping ψE : C̃p → Φ|Ṽ ∩A| be given by

ψE(c) =
(
Eu((c)Ẽ(u))

)

u∈Ṽ ∩A
.

We define codes ĈΦ and C̃Φ of length |Ṽ ∩A| over Φ as follows.

ĈΦ =
{
ψE(c) : c ∈ Ĉp

}
(4.10)

C̃Φ =
{
ψE(c) : c ∈ C̃p

}
(4.11)

The mapping ψE(·) defines a correspondence between the codewords of the code C̃p (or Ĉp)

and the codewords of C̃Φ (or ĈΦ, respectively).

The following lemma follows from Lemma 4.3.1 and the definitions of the codes C̃Φ and
ĈΦ.

Lemma 4.3.2 The codes C̃Φ and ĈΦ are related as follows:

ĈΦ ⊆ C̃Φ .

Definition. The puncturing of the code Ĉ with respect to the graph G̃ is called (dA, dB)-
preserving if for every u ∈ Ṽ ∩ A and every v ∈ Ṽ ∩ B, the codes Cp(u) and Cp(v) have
minimum distance ≥ dA and ≥ dB, respectively.

Lemma 4.3.3 Suppose that the code Ĉ is punctured (with respect to the graph G̃) using
(dA, dB)-preserving puncturing. Then, the minimum distance of each of the appropriate codes
ĈΦ and C̃Φ is greater than or equal to

dB/∆− γG
√
dB/dA

1− γG
· n .

Proof. Consider a non-zero codeword of C̃Φ and let c ∈ C̃p be a corresponding codeword of
C̃p. Let Ỹ ⊆ Ẽ be its support set. The set Ỹ is also a subset of E. Therefore, Ỹ forms a set
of edges in the graph G such that for each vertex in A and B there are at least dA and dB

edges in Ỹ , respectively, incident with it.

Using the steps of the proof of Theorem 2.2.1, it follows that the number of vertices in
A having incident edges in Ỹ is bounded from below by

dB/∆− γG
√
dB/dA

1− γG
· n ,
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which is (due to linearity over F of the code C̃Φ) also a lower bound on the minimum distance
of the code C̃Φ. From Lemma 4.3.2 it follows that this is also a lower bound on the minimum
distance of the code ĈΦ.

Figure 4.1 presents a decoder DecodeInduced for the code ĈΦ. This decoder is similar to
the decoder in Figure 2.1.

Input: received word y = (yu)u∈Ṽ ∩A in (Φ ∪ {?})|Ṽ ∩A|.

Iteration 1: For u ∈ A do: (z)Ẽ(u) ←
{
E−1

u (yu) if ∃au ∈ FẼ(u) : yu = Eu(au)
?? . . . ? otherwise

.

Iteration i: For i = 2, 3, . . . , ν do:

(a) If i is odd then U ≡ Ṽ ∩A, else U ≡ Ṽ ∩B.

(b) For every u ∈ U do: (z)Ẽ(u) ← application of Dp(u) on (z)Ẽ(u).

Output: ψE(z) if z ∈ C̃p (and declare ‘error’ otherwise).

Figure 4.1: Decoder DecodeInducedG̃ for the induced code ĈΦ.

We use the notation “?” to stand for an erasure. The algorithm in Figure 4.1 makes use
of a word z = (ze)e∈Ẽ over F∪{?} that is initialized according to the contents of the received
word y as follows. Each sub-block (z)Ẽ(u) that corresponds to a non-erased entry yu of y

such that there exists au ∈ FẼ(u) satisfying yu = Eu(au), is initialized to the word au. The
remaining sub-blocks (z)Ẽ(u) are initialized as erased words of length degG̃(u) (and thus it
is possible that some erroneous symbols will be replaced by a block of erasures). Iterations
i = 3, 5, 7, . . . use error-correcting decoders Dp(u) : F

degG̃(u) → Cp(u) (for u ∈ Ṽ ∩ A), and
iterations i = 2, 4, 6, . . . use combined error-erasure decoders Dp(u) : F

degG̃(u) → Cp(u) (for
u ∈ Ṽ ∩B). The number of iterations ν is set to the number of iterations in the decoder in
Figure 2.1, run with the same parameters, and is bounded by O(logn).

Pick a word c ∈ ĈΦ. Suppose that some symbols of c are errors and some are erasures,
resulting in the word y ∈ (Φ ∪ {?})|Ṽ ∩A|. Suppose that the decoder in Figure 4.1 is applied
to the word y.

We say that an edge e ∈ Ẽ is corrupted at a given time during the execution of the
algorithm (in Figure 4.1) if the respective entry in z is in F yet differs from (ψ−1

E (c))e. A
vertex v ∈ Ṽ is corrupted if Ẽ(v) contains a corrupted edge.

For i = 1, 2, . . . , ν, denote by zi = (zi
e)e∈Ẽ the result z at the end of Iteration i (value

i = 1 is used for the word z just before the application of the decoder). We let Zi be the
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respective subsets of corrupted edges, i.e.,

Zi =
{
e ∈ Ẽ : zi

e ∈ F and zi
e 6= (ψ−1

E (c))e

}
,

and denote by Si and Ri the respective subsets of corrupted and erased vertices, respectively:

Si =
{
v ∈ Ṽ : Ẽ(v) ∩ Zi 6= ∅

}
, (4.12)

Ri =
{
v ∈ Ṽ : ze = ? for every e ∈ Ẽ(v)

}
. (4.13)

(Actually, for i 6= 1, Ri = ∅).

Theorem 4.3.4 Consider the (dA, dB)-preserving puncturing of the code Ĉ with respect
to the graph G̃, and let √

dAdB > 2γG∆ > 0 .

Then the decoder in Figure 4.1 applied to the word y (using the graph G̃) recovers any pattern
that consists of t errors (over Φ) and ρ erasures, provided that

t+ 1
2
ρ < n · (dB/2∆)− γG

√
dB/dA

1− γG
.

The number of iterations is bounded from above by O(logn). The total time complexity of
such decoding is O(n).

Proof. The proof is similar to the proof of Theorem 2.3.1. For i = 1, 2, · · · , ν define
χi : V → {0, 1

2
, 1} be the function

χi(u) =






1 if u ∈ Si ∩ A and i is odd
1 if u ∈ Si ∩ B and i is even
1
2

if u ∈ R1

0 otherwise

.

We denote

σi =






1

n

∑

u∈Ṽ ∩A

χi(u) if i is odd

1

n

∑

u∈Ṽ ∩B

χi(u) if i is even

.

Note that a vertex v ∈ Ṽ ∩ A (v ∈ Ṽ ∩ B, respectively) can belong to Si (for i ≥ 2) only if
the sum

∑
u∈N (v) χi−1(u) is at least dB/2 (dA/2, respectively). Then, the function χi satisfies
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the conditions of Lemma 2.3.2 (with dA/∆ taken instead of δA for even i, and dB/∆ instead
of δB for odd i), and, so,

√
σi−1

σi
≥






dA/∆

γG
− 1− γG

γG
σi−1 for even 0 < i < ℓ

dB/∆

γG
− 1− γG

γG
σi−1 for odd 0 < i < ℓ

. (4.14)

The last equation coincides with equation (2.12). From this point, the proof continues as
the proof of Theorem 2.3.1. This leads to the required result.

4.3.2 General decoding procedure

In this section, we describe an error correcting procedure for the code C, built using the
graph G as in Section 4.1, with

0 < η <
δA − γG

√
δA/δ2

1− γG
− γ2/3

G .

First, we describe a construction procedure and parameters of the graph G̃, which is built
from the graph G and used in the decoding procedure. We define sets of vertices A′, B′ and
Ṽ , as follows

A′ =

{
v ∈ A s.t. JB2(v) ≥ η∆ +

γ
2/3
G ∆

2

}
,

B′ =
{
u ∈ B1 s.t. |N (u) ∩ A′| ≥ 2γ

2/3
G ∆

}
.

and
Ṽ = V \(A′ ∪ B′) .

Let Ẽ be the set
Ẽ =

{
e = {u, v} s.t. u ∈ Ṽ , v ∈ Ṽ and e ∈ E

}
.

Let G̃ be a graph with the vertex set Ṽ and the edge set Ẽ.

Lemma 4.3.5 For every u ∈ Ṽ ∩ A, the relative minimum distance of the code Cp(u)
(corresponding to the puncturing defined by the graph G̃ as above) is

δp(u) >
1
2
γ

2/3
G .

Moreover, it holds that the size of A′ satisfies |A′| ≤ γ
2/3
G n.
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Proof. We make use of Proposition 4.2.2, with respect to the set B2 instead of S. The
number ξ of vertices u ∈ A for which

|JB2(u)− η∆| ≥ ρ∆
√
η(1− η) ,

for any ρ ∈ (0, 1) satisfies

ξ

n

(
ρ∆
√
η(1− η)

)2

≤ γ2
G∆2η(1− η) ,

or, equivalently,

ξ ≤ n · γ
2
G
ρ2

. (4.15)

Since
√
η(1− η) ≤ 1

2
, we conclude that this ξ is also an upper bound on the number of

vertices u ∈ A for which

|JB2(u)− η∆| ≥ ρ∆

2
. (4.16)

We select ρ = γ
2/3
G , and so ξ ≤ γ

2/3
G n. Then, the equation (4.16) is implied by

JB2(u) ≥ η∆ +
γ

2/3
G ∆

2
. (4.17)

Therefore there are at most ξ ≤ γ
2/3
G n vertices u ∈ A that satisfy equation (4.17), and so

|A′| ≤ γ
2/3
G n. This completes the proof of the second claim of the lemma.

Next, for every u ∈ Ṽ ∩ A, there are less than η∆ + 1
2
γ

2/3
G ∆ edges connecting u with

vertices in B2. Since the minimum distance of C(u) (for u ∈ Ṽ ∩ A) is δA∆, we obtain that
the minimum relative distance of the code Cp(u) (for u ∈ Ṽ ∩ A, and with respect to the
graph G̃) is bounded from below by

δp(u) ≥ δA −
(
η + 1

2
γ

2/3
G

)

> δA − δA + γG
√
δA/δ2 + γ

2/3
G − 1

2
γ

2/3
G

= γG
√
δA/δ2 + 1

2
γ

2/3
G

> 1
2
γ

2/3
G .

Lemma 4.3.6 For every u ∈ Ṽ ∩B1, the relative minimum distance of the code Cp(u) is

δp(u) > δ1 − 2γ
2/3
G ,

and the size of the set B′ is bounded from above by

|B′| < γ
4/3
G · n .
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Proof. We make use of Lemma 2.3.2. Denote by S the set A′, and by T the set B′ (in the
notations of Lemma 2.3.2). Let σ = |S|/n and τ = |T |/n. For every u ∈ S let χ(u) = 1, for
every u ∈ T let χ(u) = 1, and for every u ∈ V \(S ∪ T ) let χ(u) = 0. Take the value of δB/2

in Lemma 2.3.2 to be equal to 2γ
2/3
G . Then, we obtain that

√
σ

τ
≥ 2γ

2/3
G − (1− γG)σ

γG
. (4.18)

We substitute the inequality σ ≤ γ
2/3
G (which is due to Lemma 4.3.5) into inequality (4.18),

thus obtaining √
γ

2/3
G
τ
≥ 2γ

2/3
G − (1− γG)γ

2/3
G

γG
>
γ

2/3
G
γG

=
1

γ
1/3
G

,

which yields
|T | < γ

4/3
G · n .

For every u ∈ Ṽ ∩B1, the number of edges in E connecting it with the vertices in A′ is less
than 2γ

2/3
G ∆, and, therefore the relative minimum distance of Cp(u) is

δp(u) > δ1 − 2γ
2/3
G .

Corollary 4.3.7 The subgraph G̃ induces
(

1
2
γ

2/3
G ∆, (δ1 − 2γ

2/3
G )∆

)
- preserving punctur-

ing on the code C.

Figure 4.2 below presents a decoder for the code C. This decoder uses decoders
DecodeInducedG̃ in Figure 4.1 and DecodeExpanderG in Figure 4.3 below as subroutines. The
decoding consists of three phases. In Phase A, the decoder in Figure 4.2 restores all symbols
which are indexed by the edges in the subgraph G̃ (which are the symbols of the punctured
code Ĉp(G̃)). In Phase B, the decoder in Figure 4.2 restores all the symbols of z, which are
indexed by the edges incident with the vertices in B1\B′ (most of these edges were a part
of the graph G̃; however, some edges incident with the vertices in B1 are connected to the
vertices in A′, so they were not recovered in Phase A). Finally, in Phase C, the decoder in
Figure 4.2 marks all the symbols indexed by the edges incident with the vertices in B2 as
‘erasures’, and restores their original values by an application of the decoder DecodeExpanderG
in Figure 4.3.

The decoder DecodeExpanderG in Figure 4.3 is similar to the decoder in Figure 2.1. How-
ever, the decoder in Figure 4.3 is applied to the word y ∈ (F ∪ {?})|E|, in contrast to its
counterpart in Figure 2.1, which is applied to a word in (Φ ∪ {?})n. The initialization of z

is replaced, and z is set to the input word y as is. The output of the decoder is the word
z itself. The number of iterations ν ′ is set to the number of iterations in the decoder in
Figure 2.1; in particular, ν ′ and is bounded from above by O(logn).
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Input: Received word y = (ye)e∈E in F|E|.

Phase A
1. For every v ∈ A let (x)E(v) ← application of D(v) on (y)E(v).
2. For ht = 1 to ⌈δA∆/2⌉ do {

(i) For every v ∈ A let

(z)E(v) =

{
(x)E(v) if d((y)E(v), (x)E(v)) < ht

??? otherwise
.

(ii) Let w ← ψE((z)Ẽ(v)).

(iii) Let w ← DecodeInducedG̃(w).

(iv) If ‘no error’ goto Phase B.

}
3. Return ‘error’.

Phase B
1. (z)Ẽ ← ψ−1

E (w) .
2. For every v ∈ B1\B′ let (z)E(v)\Ẽ(v) ← ??? .

3. For every v ∈ B1\B′ let (z)E(v) ← application of D(v) on (z)E(v).

Phase C
1. For every v ∈ B2 ∪B′ let (z)E(v) ← ??? .
2. Let z ← DecodeExpanderG(z) .

Output: z.

Figure 4.2: Decoder for the generalized expander code C.

4.3.3 Decoding analysis

In this section we analyze the decoder in Figure 4.2. We show that if δ1 > 2γ
2/3
G , then the

decoder in Figure 4.2 is able to correct up to JC errors over F in the word y, where JC is
given by

JC

△
=

δ1/2− γ2/3
G

(
1 +

√
2
(
δ1 − 2γ

2/3
G

))

1− γG
· δA∆n . (4.19)

Let c ∈ C be the codeword such that d(y, c) ≤ JC.

The following proposition provides a relation between the number of corrupted vertices
and the number of erased vertices in A after Step 2-(i) of Phase A of the decoder in Figure 4.2,
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Input: received word y = (ye)e∈E in (F ∪ {?})|E|.

Initialization: Let z ← y .

Iteration i: For i = 2, . . . , ν ′ do:

(a) If i is odd then U ≡ B, else U ≡ A.

(b) For every u ∈ U do: (z)E(u) ← application of D(u) on (z)E(u).

Output: z if z ∈ C (and declare ‘error’ otherwise).

Figure 4.3: Decoder DecodeExpanderG for the code C.

for some value of ht. Following definitons (4.12) and (4.13), we define S1(ht) and R1(ht) to be
the values of S1 and R1 in an application of the procedure DecodeInduced, while the external
loop of Step 2 in Phase A assumes the value ht of the threshold.

Proposition 4.3.8 There exists a threshold

ht ∈ {1, 2, . . . , ⌈δA∆/2⌉}

for which

2|S1(ht)|+ |R1(ht)| ≤
2 d(y, c)

δA∆
.

The proof of Proposition 4.3.8 is similar to its GMD counterpart. The reader can refer
to a proof of Theorem 2 in [31].

Proposition 4.3.9 Let c ∈ C. Suppose that the decoder in Figure 4.2 is applied to the
word y such that d(y, c) ≤ JC. Then Step 1 at Phase B ends with z such that

∀e ∈ Ẽ : ze = ce .

Proof. Let ht be the threshold guaranteed by Proposition 4.3.8. For this ht, the procedure
DecodeInduced is applied to the word w, having ϑ errors and ρ erasures, such that

ϑ+ 1
2
ρ ≤ |S1(ht)|+ 1

2
|R1(ht)|

≤
δ1/2− γ2/3

G

(
1 +

√
2
(
δ1 − 2γ

2/3
G

))

1− γG
· n . (4.20)
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From Corollary 4.3.7 the puncturing of C (with respect to the graph G̃) is a (γ
2/3
G ∆/2, (δ1 −

2γ
2/3
G )∆)-preserving puncturing, thereby satisfying the conditions of Theorem 4.3.4 (with

dA = γ
2/3
G ∆/2 and dB = (δ1 − 2γ

2/3
G )∆). Thus, the right-hand side of (4.20) is within the

correction radius of the code C̃Φ under the decoder in Figure 4.1. Therefore, the word of the
corresponding code C̃Φ will be restored by the procedure DecodeInduced when applied to w.
Consequently, by the definition of ψE , at the end of Step 1 of Phase B,

∀e ∈ Ẽ : ze = ce .

Proposition 4.3.10 Let c ∈ C and suppose that the decoder in Figure 4.2 is applied
to the word y such that d(y, c) ≤ JC. Then, at the end of Step 3 of Phase B, for every
u ∈ B1\B′,

(z)E(u) = (c)E(u) .

Proof. Pick any v ∈ B1\B′. It follows from Proposition 4.3.9 that for every e ∈ Ẽ(v),

ze = ce. From the definition of the graph G̃, there are less than 2γ
2/3
G ∆ edges e ∈ E incident

with v such that e /∈ Ẽ. Given that δ1 > 2γ
2/3
G , there is only one way to set the values of

these < 2γ
2/3
G ∆ edges (which can be thought of as ‘erasures’) such that (z)E(v) ∈ C(v). Thus,

obviously, the application of the error-and-erasure decoder D(v) (for v ∈ B1) in Step 3 of
Phase B will result in ze = ce for every e ∈ E(v).

Proposition 4.3.11 Let c ∈ C and suppose that the decoder in Figure 4.2 is applied to
the word y such that d(y, c) ≤ JC. Step 2 of Phase C of the decoder terminates with z = c.

Proof. It follows from Proposition 4.3.10 that before the execution of Step 1 of Phase C, for
every u ∈ B1\B′ it holds that (z)E(u) = (c)E(u). During the execution of Step 1 of Phase C,
for every u ∈ B2 ∪ B′, (z)E(u) is initialized as a vector of ‘erasures’. Therefore, before the

application of procedure DecodeExpander, there are |B2 ∪ B′| < n(η + γ
4/3
G ) erased vertices,

and the rest of the vertices in B are correct (neither erroneous nor erased).

The code C has the property that for every c ∈ C, for every u ∈ A (respectively, u ∈ B),
(c)E(u) is a codeword of a code of relative distance δA (respectively, ≥ δ2). Theorem 2.3.1 can
be used with respect to the code C defined as in Section 2.1, where δB = δ2, and all vertices
in B2 ∪ B′ are considered as ‘erased’. The decoding algorithm in Figure 4.3 is essentially
the same as the decoding algorithm in Figure 2.1, starting with Iteration 2, when the sets
A and B are switched; thus, the analysis as in Theorem 2.3.1 can be applied to it.
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By using Theorem 2.3.1, the decoder in Figure 4.2 will restore the original word c, given
that the number of erased vertices in B is less than

n · δA − γG
√
δA/δ2

1− γG
.

Indeed, since γG < 1, we have

n(η + γ
4/3
G ) < n · δA − γG

√
δA/δ2

1− γG
− γ2/3

G + γ
4/3
G < n · δA − γG

√
δA/δ2

1− γG
,

and thus the decoder in Figure 4.2 will halt with z = c.

4.4 Distance properties of generalized expander codes

In this section, we consider the codes which are defined in Section 4.1. The aim of this
section is to derive a lower bound on the binary codes induced by the codes therein.

Let |F| = q = 2ℓ. Then, each symbol over F can be viewed as a vector of length ℓ over
GF(2), and each codeword of C can be viewed as either over F or over GF(2). Denote by
wb(e) the relative binary weight of the symbol indexed by e, and by wb(x) the relative binary
weight of the word x.

Pick some non-zero codeword c ∈ C. Denote by Y ⊆ E the support of c, i.e.,

Y = {e ∈ E : ce 6= 0} .

Let S and T be the sets of all vertices in A and B, respectively, that are endpoints of edges
in Y . Let σ and τ denote ratios |S|/n and |T |/n, respectively. Denote

T 1 = T ∩ B1 ,

and let τ1 = |T 1|/n. It is shown in the proof of Theorem 4.2.3 that the value of τ1 is bounded
from below by a fixed constant (for any non-zero c ∈ C).

Let Γ = Γ(c) be the average, over all edges e ∈ ES∪T 1 of the relative binary weight of ce,
i.e.

Γ =
1

|ES∪T 1 |
∑

e∈ES∪T1

wb(e) .

Let v ∈ S ∪ T 1 be some vertex. We define local parameters Bv and Γv similarly to their
definition in [9]. We recall the definitions below.

• The quantity Bv is defined as the average over all non-zero edges e ∈ ES∪T 1 incident
with v, of the binary weight wb(e).
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• The quantity Γv is defined as the average, over all edges e ∈ ES∪T 1 incident with v,
zero or not, of the binary weight wb(e) of e.

For instance, if v ∈ T 1 then

Γv =
1

degS(v)

∑

e∈ES∪{v}

wb(e) =
1

degS(v)

∑

e∈E(v)

wb(e) ,

and, if v ∈ S then

Γv =
1

degT 1(v)

∑

e∈ET1∪{v}

wb(e) =
1

degS(v)

∑

e∈E(v)

wb(e) .

If for some vertex v ∈ S ∪ T 1 there are no incident edges in ES∪T 1 , then Γv is set to zero.
Similarly, if for some vertex v ∈ S ∪ T 1 there are no non-zero incident edges in ES∪T 1 , then
Bv is set to zero.

Note that Γv ≤ Bv.

Along this section, similarly to the notation in [9], we denote by ε the value that can be
made as small as desired by increasing ∆.

In this section, the proofs are similar to their counterparts in [9]. We will prove the
lemmas that require some adjustments of their proofs, and will provide the rest of the claims
without proofs.

Lemma 4.4.1 (This lemma is a counterpart of Corollary 6 in [9].) Let α be such that
α = o∆(1) and 1/(α

√
∆) = o∆(1). Let S ⊆ A such that |S| = σn. Define

Rα = {v ∈ B : (1− α)σ∆ ≤ degS(v) ≤ (1 + α)σ∆} . (4.21)

Then, 1− |Rα|/n = o∆(1).

This lemma directly follows from Proposition 4.2.2. It can also be shown by using the
techniques presented in [9].

Lemma 4.4.2 (This lemma is a counterpart of Lemma 7 in [9].) Using the notations
defined above,

Γ =
1

|S|
∑

v∈S

Γv + o∆(1) (4.22)

=
1

|T 1|
∑

v∈T 1

Γv + o∆(1) . (4.23)
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The proof of this lemma is similar to the proof of Lemma 7 in [9]. We reformulate and
reprove the main stages of it in Appendix E.

Next, we define the q-ary constrained distance of the code CB , δB(B). It is a lower bound
on the minimum relative q-ary weight of any non-zero codeword of C1 such that the average
binary weight of its non-zero symbols equals Bℓ.

Lemma 4.4.3 For any ε > 0, ℓ and ∆ large enough, there exist codes CB of rate rB

such that for any 0 < B < 1, the minimum relative B-constrained q-ary weight δB(B) of CB
satisfies

δB(B) ≥ 1− rB

H2(B)
− ε . (4.24)

In particular, the code CB can be selected as an appropriate RS code.

The claim of this lemma is not related to the definition of the code C. This lemma
appears as Lemma 9 in [9], and its proof appears therein as well.

Lemma 4.4.4 For a non-zero codeword c ∈ C, let S, σ and Γ be defined as above. For
any ε > 0 there exist ∆ and ℓ such that for any c ∈ C:

σ ≥ 1− rB

H̄2(Γ)
− ε , (4.25)

where H̄2(Γ) is defined as

H̄2(Γ) =

{
H2(Γ) for 0 ≤ Γ ≤ 1

2

1 for 1
2
< Γ ≤ 1

. (4.26)

This lemma is a counterpart of Lemma 10 in [9], and its proof is similar to the proof of
Lemma 10 in [9]. In Appendix E, we reprove this lemma.

Let α be such that α = o∆(1) and 1/α
√

∆ = o∆(1). Define the set

Sα = {v ∈ S : (1− α)τ1∆ ≤ degT 1(v) ≤ (1 + α)τ1∆} .

Then, by Lemma 4.4.1 (when switching between A and B, and between S and T1), 1−Sα/n =
o∆(1).

Now we introduce the binary constrained distance δA(B) for the code CA. This definition
is different from the definition of δB(B), in particular, because the constraint is applied only
to the symbols indexed by the edges incident with B1, and at the same time the symbols
indexed by the edges incident with B2 remain unconstrained. Let us fix a set of (1− α)τ1∆
symbols indexed by the edges having endpoints in B1 (in the sequel we will ignore the vertices
in A that have less (1− α)τ1∆ edges incident with vertices in B1). Let δA(B) be:
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1. a ∪-convex continuous function of B, and —

2. a lower bound on the minimum relative binary weight of a codeword of CA under the
restriction that the average binary weight of τ1∆(1 − α) non-zero fixed symbols of it
is at least Bℓ.

Lemma 4.4.5 Let c be a codeword of C and let S, |S| = σn, and Γ be the quantities
defined above. The relative binary weight wb(c) satisfies

wb(c) ≥ σδA(Γ) + o(1) .

Proof. The proof of this lemma is similar to the proof of Lemma 8 in [9]. We rewrite
the proof with the required adjustments.

From the definition of the function δA(·),

wb(c) =
1

n

∑

v∈A

wb((c)E(v)) =
1

n

∑

v∈S

wb((c)E(v))

≥ σ

|S|
∑

v∈S\Sα

wb((c)E(v)) ≥
σ

|S|
∑

v∈S\Sα

δA(Bv) .

Since Bv ≥ Γv and δA(·) is a non-decreasing function, we have δA(Bv) ≥ δA(Γv). Therefore,

1

|S|
∑

v∈S\Sα

δA(Bv) ≥
1

|S|
∑

v∈S\Sα

δA(Γv) =
1

|S|

(
∑

v∈S

δA(Γv)−
∑

v∈Sα

δA(Γv)

)

=
1

|S|

(
∑

v∈S

δA(Γv)

)
− o∆(1) ≥ δA

(
∑

v∈S

Γv

|S|

)
− o∆(1)

= δA(Γ + o∆(1))− o∆(1) = δA(Γ)± o∆(1) ,

where the second equality follows due to the fact that 1−Sα/n = o∆(1), the second inequality
is due to convexity of δA(·), the penultimate equality is due to Lemma 4.4.2, and the last
equality is due to the uniform continuity of δA(·).

Lemma 4.4.6 For any ε > 0, for ∆ and ℓ large enough, for any rA, there exist code CA
of rate rA such that, for every B, δA(B)+ ε is greater than any convex function that does not
exceed ω0(B), where ω0(B) is the root of the equation in ω0

1− rA = max
rAω1+(1−rA)ω2=ω0

rAω1
H2(B)

B
+ (1− rA)H(ω2) , (4.27)

where ω0 and ω1 are constrained by H−1
2 (1− rA) ≤ ω0 ≤ B and ω1 ≤ B.
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The claim of this lemma is not related to the definition of the code C. This lemma
appears as Lemma 13 in [9], and its proof appears therein as well.

In [9], the authors optimize the equality (4.27) over the values of ω1 and ω2. We will omit
these technical calculations, but the reader can refer to [9, Section IV.B] for more details.
The authors obtain in [9] that a lower bound ω⋆⋆(B) on δA(B) = δA(B, rA) is given by

ω⋆⋆(B) = rAB + (1− rA)H−1
2

(
1− rA

1− rA

H2(B)

)
,

for δGV (rA) ≤ B ≤ B1, where B1 is the only root of the equation

δGV (rA) = w⋆(B) ,

and

w⋆(B) = (1− rA)

(
(2H2(B)/B + 1)−1 +

B

H2(B)

(
1− H2

(
(2H2(B)/B + 1)−1

)))
.

For B1 ≤ B ≤ 1
2
, the function δA(B) is bounded from below by a tangent to the function

ω⋆⋆(B) drawn from the point
(

1
2
, ω⋆(1

2
)
)
.

The next theorem provides a lower bound on the relative minimum distance of the code
C. It follows by combining the results in Lemmas 4.4.3, 4.4.4, and 4.4.5, with the expression
for δA(B, rA).

Theorem 4.4.7 (This theorem is a counterpart of Theorem 14 in [9].) There exists a
polynomial-time constructible family of binary linear codes C of length N = n∆, n → ∞,
and sufficiently large but constant ∆ = ∆(ε), whose relative minimum distance satisfies

δ(R) ≥ max
R≤rA≤1

{
min

δGV (rA)≤B≤1/2

(
δA(B, rA)

1−R/rA

H2(B)

)}
− ε . (4.28)

It follows from Theorem 4.4.7 that the generalized expander codes presented in this
section are at least as good (from the point of view of their rate-distance trade-offs) as the
codes in [9].

4.5 Discussion

Consider the code C as defined in Section 4.1, with parameter η slightly less than the right-
hand side in inequality (4.3). We showed in Theorem 4.4.7, that the relative minimum
distance δ(R) of such a code C of rate R is bounded from below by the expression in (4.28).
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By contrast, consider the code C with parameter η = 0. For this code, the size of the set
B2 is zero, and therefore in such a case the code C coincides with the code CBZ2, defined in
Section 1.4.3. The relative minimum distance δBZ2 of that code of rate R is shown in [9] to
satisfy

δBZ2(R) ≥ 1

4
(1−R)2 · min

δGV ((1+R)/2)<B<
1
2

g(B)

H2(B)
,

as it was mentioned in Section 1.4.5.

In Table 4.1, which is taken from [9], we compare the values of these two bounds, δ(R)
and δBZ2(R), for various values of R, with the Zyablov bound δZ(R).

R 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

δZ(R) 0.129 0.073 0.044 0.026 0.015 0.008 0.0040 0.0015 0.00030
δBZ2(R) 0.077 0.061 0.046 0.034 0.024 0.015 0.0084 0.0037 0.00089
δ(R) 0.148 0.095 0.063 0.041 0.026 0.015 0.0078 0.0031 0.00073

Table 4.1: Two bounds on the relative minimum distance of expander codes in [9].

We can see that the bound δ(R) is superior to the Zyablov bound for any rate R in
the table. It is also interesting to compare the bounds δ(R) and δBZ2(R). We see that the
bound δ(R) is superior for low rates, while the bound δBZ2(R) is superior for high rates. It
would be nice to derive a combined analytical bound which will be at least as good as both
these bounds. One approach could be to take a value of η ‘sliding’ between zero and the
right-hand side of (4.3), and to establish the point at which the value of η maximizes the
appropriate value of the relative minimum distance of the corresponding code C.

Unfortunately, we were not able to provide a good lower bound on the minimum distance
of C for the intermediate values of η. The lower bound that we were able to derive was
always less or equal to the highest bound among δ(R) and δBZ2(R). However, it seems that
this research direction was not fully explored.
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Chapter 5

Decoding Non-bipartite Expander
Codes

5.1 Problem definition

In this chapter, we discuss the decoding of the codes of Sipser and Spielman [79], defined
in Section 1.4.1 of this thesis. Recall that the relative minimum distance of the codes C

(defined therein) is bounded from below by

(
δ0 − γG
1− γG

)2

= δ2
0 − O(γG) , (5.1)

where δ0 is a relative minimum distance of the constituent code, and γG is a ratio between
the second and the first largest eigenvalues of AG. On the other hand, the decoder in [79] is
able to correct a number of errors that is close to only a fraction 1

48
δ2
0 of the code length.

In [84], Zémor improves on the fraction of correctable errors for the code C. By taking an
underlying graph G as a bipartite Ramanujan graph, Zémor is able to improve the fraction
of correctable errors by a factor of 12, so this value became close to 1

4
of the known lower

bound on the minimum distance.

In Chapter 2, we further improve on the result of Zémor. By using erasures in addition to
errors, and employing GMD-like decoding (see [30], [31]), we are able to improve the fraction
of correctable errors by a factor of nearly 2, increasing it to (almost) half the known lower
bound on the minimum distance of the code C.

However, in Chapter 2 we use the same codes as Zémor does, namely the underlying
graphs of these codes are bipartite. It is a question, however, whether this improvement
can be achieved for low-complexity codes whose underlying graphs are not bipartite. In this
section, we give a positive answer to this question. In particular, we show a reduction from
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the codes defined on non-bipartite graphs to codes defined on bipartite graphs. The latter
codes can be decoded by the methods shown in Chapter 2 for codes based on bipartite graph,
thus achieving almost half the minimum distance error correction. Thus, this reduction leads
to the decoding of the original codes (defined on non-bipartite graphs) up to (almost) half
(the lower bound on) the minimum distance.

5.2 Reduction

Consider the code C = (G, C) as defined in Section 1.4.1, with a linear [∆, k=r∆, d0=δ0∆]
constituent code C over F = GF(q). Let G = (V,E) be an underlying graph and AG its
adjacency matrix. Let λ∗ be the second largest absolute value of eigenvalue of AG, and
denote γ∗G = λ∗/∆.

Below, we use the following graph construction. Define a new graph Ĝ = (V̂ , Ê), where

for each vertex v ∈ V we let V̂ = V1 ∪ V2 contain two descendant vertices v1 and v2, with
v1 ∈ V1 and v2 ∈ V2 (thus, |V1| = |V2| = |V | = n). For each edge e = a—b in E, we let Ê
contain the following two descendant edges:

e1 = a1—b2 , e2 = a2—b1 .

Thus, every edge in Ê has one endpoint in V1 and one endpoint in V2. The degree of every
vertex in V̂ is ∆, and |Ê| = 2|E| = n∆.

It can be shown that if λi 6= 0 is an eigenvalue of AG and its multiplicity is mi, then
λi and −λi are both eigenvalues of the adjacency matrix of Ĝ, AbG, and their corresponding
multiplicities are both mi [56, p. 84]. It follows that γ∗G is the ratio between the second
largest eigenvalue of AbG and ∆.

An ordering on V̂ is assumed to be inherited from V , where vi precedes v′j (for i, j ∈ {1, 2})
if either i < j or both i = j and the parent vertex v precedes v′ in V . This ordering induces
an ordering on the set Ê(vi) of edges incident with vi in Ĝ.

Define the code Ĉ of length n∆ over F, by means of the graph Ĝ:

Ĉ =
{
c ∈ F

n∆ : (c)bE(u) ∈ C for every u ∈ V̂
}
.

Essentially, the code Ĉ coincides with the code C defined in Section 2.1, for an appropriate
choice of C. Therefore, from Theorem 2.2.1, we obtain that the relative minimum distance
δ̂ of the code Ĉ satisfies

δ̂ ≥ δ0 ·
δ0 − γ∗G
1− γ∗G

. (5.2)
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Next, we define a mapping ϕ̂ : F|E| → F| bE|, which copies each symbol of its argument
twice, as follows. For y ∈ F|E|,

(ϕ̂(y))e1
= (ϕ̂(y))e2

= ye .

We also define a mapping ϕ̂−1 : F| bE| → F|E|, which keeps only half of symbols of its argument,
as follows. For z ∈ F

bE, (
ϕ̂−1(z)

)
e
= ze1 .

Now, we are ready to discuss a decoder for the code C, which appears in Figure 5.1. The
decoder applies the mapping ϕ̂ to its input y, thus producing a word z of length ∆n. Then,
it applies a decoder Dcont for the code Ĉ to z (for example, Dcont can be a GMD decoder
with any half min-distance decoder for the inner code C, and the decoder DΦ in Figure 2.1
for the outer code, as described in Chapter 2.3). Such decoder Dcont is able to correct a
fraction of errors up to

δ0 ·
δ0/2− γ∗G

1− γ∗G
of the length of the code Ĉ. Finally, the decoder applies the mapping ϕ̂−1 to the result.

Input: Received word y = (ye)e∈E in F|E|.

Let z ← ϕ̂(y).

Let z ← Dcont(z).

Output: ϕ̂−1(z) if there exists c ∈ C such that z = ϕ̂(c) (and declare ‘error’ otherwise).

Figure 5.1: Decoder for the code C defined over a non-bipartite graph.

Theorem 5.2.1 Let C be a code as considered in this section. Suppose that a word
y ∈ F|E| is such that

d(y, c) < δ0 ·
δ0/2− γ∗G

1− γ∗G
· |E| . (5.3)

for some codeword c ∈ C. Then, the decoder in Figure 5.1 when applied to the word y, will
output the word c.

Proof. Consider a word y as given in the conditions of the theorem. Define the words

z = ϕ̂(y) and ĉ = ϕ̂(c) .
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Obviously,

d(z, ĉ) = 2 · d(y, c) < 2δ0 ·
δ0/2− γ∗G

1− γ∗G
· |E| = δ0 ·

δ0/2− γ∗G
1− γ∗G

· |Ê| , (5.4)

where the first equality follows from the definition of ϕ̂, and the first inequality is due to the
conditions of the theorem.

From the definition of ϕ̂, the word ĉ is a codeword of Ĉ. Note that the word z lies in the
ball around the codeword ĉ of radius less than the expression in the right-hand side of (5.4),
which is the radius of correction for the decoder Dcont. Therefore, application of this decoder
on z will produce the word ĉ.

Finally, by the definition of ϕ̂−1, c = ϕ̂−1(ĉ). Therefore, the decoder in Figure 5.1 will
output the word c.

Conclusion. We presented a linear-time decoder for the codes C in [79] (defined in
Section 1.4.1), which is able to correct a fraction of errors that is close to half the minimum
distance of that code.

Remark. While the lower bound on the relative distance in (5.1) depends on γG, both
the bound on the relative minimum distance in (5.2) and the bound on the number of
correctable errors in (5.3) depend on γ∗G, where γ∗G ≥ γG (with a possible strict inequality for
a non-bipartite G).
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Chapter 6

Asymptotic Goodness of Expander
Codes with Weak Constituent Codes

6.1 Problem description

In this chapter, we consider the code C = (G, CA : CB) defined as in Section 2.1. We
discuss necessary and sufficient conditions on the relative minimum distances δA and δB of
the constituent codes CA and CB so that the overall code C is asymptotically good, i.e. the
relative minimum distance C is bounded away from zero as n→∞.

From Theorem 2.2.1, and from the properties of concatenated codes, the relative mini-
mum distance of the code C is bounded from below by

δ ≥ δA ·
δB − γG

√
δB/δA

1− γG
=
δAδB − γG

√
δAδB

1− γG
.

It follows immediately that the relative minimum distance of the code C is bounded away
from zero if

δAδB > γG
√
δAδB ,

or, equivalently, √
δAδB > γG . (6.1)

We denote dA = δA∆ and dB = δB∆. Then, the Equation (6.1) can be rewritten as
√
dAdB > γG∆ = λ , (6.2)

where λ is the second largest eigenvalue of the adjacency matrix of G.
However, as we show in the sequel, this condition is not always necessary. We aim at

finding stricter conditions on δA and δB (or on dA and dB) for the code C to be asymptotically
good. First, we survey some related results found in the literature.
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Sipser and Spielman consider in [79] a code C with an underlying (α, ζ)-expander graph,
where the code CA is the repetition code and the code CB is the parity code (dA = ∆,
dB = 2). They show that if ζ ≥ 3

4
, then the code C has a relative minimum distance at

least α. Moreover, the authors present a decoding algorithm for that code, which is able to
correct up to a number of errors which is a fraction α/2 of the code length.

It is not known whether any Ramanujan graphs are suitable for the above Sipser-Spielman
construction. While it is relatively straightforward to show that for Ramanujan graphs ζ ≥ 1

4
,

Kahale in [43] shows that for Ramanujan graphs, ζ is bounded from below by approximately
1
2
. It is also shown in [43] that there exist Ramanujan graphs with expansion factor ζ equal

to approximately 1
2
, and thus, the eigenvalue approach cannot provide better bounds on

ζ . On the other hand, it is shown in [79] that a random bipartite graph has ζ ≥ 3
4

with
probability close to 1.

In [9], Barg and Zémor consider codes C with dA ≥ 3, dB ≥ 3. They show that for a
family of random graphs, there are such codes C with relative minimum distance bounded
away from zero. Therefore, it is enough to take rather weak constituent codes CA and CB,
but rather a good family of the underlying graphs G in order to obtain an asymptotically
good family of the codes C.

6.2 Girth of regular graphs

In this section, we discuss the lengths of cycles in Ramanujan graphs.

Definiton A girth of a graph is the length of the shortest cycle in it.

We begin with the following lemma [19, Chapter IV.1].

Lemma 6.2.1 For g ≥ 3 and d ≥ 3 let

n0(g, d) =

{
1 + d

d−2

(
(d− 1)(g−1)/2 − 1

)
if g is odd ,

2
d−2

(
(d− 1)g/2 − 1

)
if g is even .

Then any graph with minimal degree d and girth g has at least n0(g, d) vertices.

Corollary 6.2.2 For ∆ ≥ 3 and 2n ≥ ∆ + 1, the girth g(G) of any bipartite ∆-regular
graph G on 2n vertices is at most

g(G) ≤
⌊

2 log∆−1 (n · (∆− 2) + 1)

⌋

≈ 2 log∆−1 (n) + 2 . (6.3)
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The corollary follows from Lemma 6.2.1 by re-arrangement of the terms in each of the two
expressions in the definition of n0(g, d) in the lemma. Selection of the smallest between the
two expressions leads to the required result.

In the sequel, we will need the following simple lemma. Its proof is somehwat based on
the same idea as the proof presented in [19] for the counterpart of Lemma 6.2.1.

Lemma 6.2.3 For a ∆-regular graph G = (V,E) with 2n vertices, with ∆ ≥ 3 and
2n ≥ ∆ + 1, at least one of the two following sets of conditions holds:

1. There exist a vertex v ∈ V and two distinct simple cycles L1, L2 in G, such that:

(i) The vertex v belongs to both cycles L1 and L2;

(ii) The length of L1 is bounded from above by the right-hand side expression of the
inequality in (6.3), and the number of edges of L2 that do not belong to L1 is
bounded from above by

⌊log∆−1(2n)⌋+ 1 .

2. There exist a vertex v ∈ V , two simple cycles L1, L2, and a path P in G (P could be
one vertex and no edges), such that:

(i) The vertex v belongs to L1 and P, the cycles L1, L2 and the path P are all
edge-disjoint, and the path P connects the vertex v with the cycle L2.

(ii) The length of L1 is bounded from above by the right-hand side expression of the
inequality in (6.3), and the number of edges in L2 and P together is bounded from
above by

⌊2 log∆−1(2n)⌋+ 2 .

Proof. Let G = (V,E) be the given graph. First, by using Corollary 6.2.2, there exists
a simple cycle in G of length g1, which is less than or equal to the right-hand side expression
of the inequality in (6.3). We denote this cycle by L1, and its edges and vertices by

e1 : v1 − v2 , e2 : v2 − v3 , · · · , eg1 : vg1 − v1 .

We also denote by H the graph with the vertex set V and the edge set EH, where EH is
obtained from E by removing the edges along the cycle L1. Then, the degree in H of every
vertex in L1 is ∆− 2, and the degree in H of any other vertex is ∆.

We apply the Breadth First Search (BFS) algorithm [26, Chapter 1] to H, starting at v1.
The BFS algorithm produces a tree with a root v1 (see [26, Chapter 1] for details). We stop
the BFS algorithm either if one of the vertices v2, v2, · · · , vg1 appeared in the produced tree,
or if some vertex u ∈ V (possibly u = v1) appeared at least twice in the tree. We denote by
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g2 the height of the tree, i.e. the number of the edges along the longest path from v1 to any
leaf in the tree.

Suppose that the BFS algorithm has stopped. This may happen due to one of the two
following reasons:

1. A vertex vi ∈ {v1, v2, · · · , vg1} has been encountered. Then, there is a simple path in
H from v1 to vi of length g2. Thus, the simple cycle L2 in G is obtained by connecting
this path to the shortest among the two paths:

vi − vi+1 − vi+2 − · · · − v1 ,

and
vi − vi−1 − vi−2 − · · · − v1 .

The number of edges in L2 that do not belong to L1 is g2. Obviously, the vertex v1

belongs to the both L1 and L2, and L1 6= L2.

2. The vertex u ∈ V \{v1, v2, · · · , vg1} has been encountered twice. This means that there
are two different paths in H of length g2 (at most) between v1 and u. Then, these
two paths, when connected together, form a (not necessarily simple) cycle of length
at most 2g2. Obviously, it is possible to extract (from this possibly not simple cycle),
a simple cycle L2 and a path P connecting between v1 and L2. The total number of
edges in L2 and P is at most 2g2. The cycles L1 and L2 and the path P are disjoint,
and (together with the vertex v = v1) satisfy the requirement (i) of the case 2 of the
lemma.

We complete the proof by bounding from above the value of g2, as we describe next. The
algorithm will not stop while all the vertices in the produced tree are different. Thus, there
are ∆ − 2 vertices at distance 1 from v1, (∆ − 2)(∆ − 1) vertices at distance 2, and so on,
and (∆− 2)(∆− 1)g2−2 vertices at distance g2 − 1. The algorithm will not stop until

1 + (∆− 2) + (∆− 2)(∆− 1) + · · ·+ (∆− 2)(∆− 1)g2−2 ≤ 2n .

We obtain,

1 + (∆− 2) · (∆− 1)g2−1 − 1

(∆− 1)− 1
≤ 2n ,

thus yielding

g2 ≤ log∆−1(2n) + 1 .

The latter inequality yields claim (ii) of (both cases) of the lemma.

The following lemma provides a lower bound on the girth of certain families of Ramanujan
graphs.
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Lemma 6.2.4 The girth of any of the bipartite Ramanujan graphs presented in [53], [62]
is bounded from below by g(G) ≥ 4

3
log∆−1(2n).

The proof of this lemma can be found in [53] and [62].

6.3 Constituent codes with minimum distance 2

In this section, we consider ‘the weakest case’, — a code C with both CA and CB having
minimum distance 2 and redundancy 1. Below, we distinguish between the case where CA
and CB are parity codes over GF(2), and the case where CA and CB are codes of minimum
distance 2 (and redundancy 1) over GF(q) (q > 2). We show that in both cases, the code C

cannot be asymptotically good and we provide rather tight bounds on its minimum distance.

The next two theorems provide upper bounds on the minimum distance of C where the
codes CA and CB are taken as the parity codes over GF(2), and as codes of minimum distance
2 (and redundancy 1) over GF(q), respectively.

Theorem 6.3.1 Consider a code C defined as in Section 2.1, where CA and CB are taken
as the parity codes of length ∆ over GF(2), and G is a ∆-regular bipartite graph, ∆ ≥ 3.
Then, the minimum distance D of such a code C is bounded from above by

D ≤
⌊
2 log∆−1 (n · (∆− 2) + 1)

⌋
.

Proof. Since the graph is bipartite and simple with n vertices on each side, it follows that
n ≥ ∆, and so 2n ≥ ∆ + 1. Take the shortest cycle L in the graph G (the length g of L is
even since G is bipartite). Define a word c ∈ F|E| as follows:

ce =

{
0 if e /∈ L
1 if e ∈ L .

Since g is even it follows that each vertex in G is incident with an even number of edges of
L. Therefore, c ∈ C.

The word c is such that the number of non-zero symbols in it is equal to the length of L.
By Corollary 6.2.2 we have that D is bounded from above by the right-hand side expression
of the inequality in (6.3).

Theorem 6.3.2 Let a code C be defined as in Section 2.1, where CA and CB are taken
as codes with minimum distance 2 and redundancy 1 of length ∆ over GF(q), and G is a ∆-
regular bipartite graph, ∆ ≥ 3. Then, the minimum distance D of such a code C is bounded
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from above by

D ≤
⌊
2 log∆−1 (n · (∆− 2) + 1)

⌋
+

⌊
2 log∆−1(2n)

⌋
+ 2 ≈ 4 log∆−1(n) + 6 .

Proof. It is given that both codes CA and CB have minimum distance 2 and redundancy 1.
Then, there exist parity-check matrices for these codes consisting of one row each.

As before, the graph is bipartite with n vertices on each side, thus yielding that n ≥ ∆,
and so 2n ≥ ∆ + 1. Therefore, the conditions of Lemma 6.2.3 are satisfied, and it follows
that at least one of the two sets of conditions in the lemma are valid.

• Suppose that the first set (set 1) of the conditions in the lemma is valid. Then, let the
cycles L1 and L2 be as guaranteed by the lemma.

We define a word c ∈ C as follows:

ce = 0 for e /∈ L1 ∪ L2 .

In addition, we have to set the values of any ce such that e ∈ L1 ∪ L2. These values
are constrained such that for every vertex v ∈ L1 ∪ L2 either (c)E(v) ∈ CA (if v ∈ A)
or (c)E(v) ∈ CB (if v ∈ B). We obtain a system of linear equations: the number of
variables in it is equal to the number of edges in L1∪L2, and the number of equations
is equal to the number of vertices in L1 ∪ L2. Therefore, the number of variables is
larger than the number of equations. There must exist a non-trivial solution for this
system.

The word c as above is such that the number of non-zero symbols in it is less than or
equal to the number of edges in L1 ∪ L2. By Lemma 6.2.3, this number is bounded
from above by

⌊
2 log∆−1 (n · (∆− 2) + 1)

⌋
+

⌊
log∆−1(2n)

⌋
+ 1 . (6.4)

• Now, suppose that the second set (set 2) of the conditions in the lemma is valid. The
proof proceeds very similarly to the previous case. Namely, let the cycles L1 and L2,
and the path P be as guaranteed by the lemma. We define a word c ∈ C such that

ce = 0 for e /∈ L1 ∪ L2 ∪ P ,

and, in addition, we have to set the values of ce for e ∈ L1∪L2∪P. Similarly, we obtain
a system of linear equations with the number of variables larger than the number of
equations. There must exist a non-trivial solution for this system.

100



The obtained word c is such that the number of non-zero symbols in it is less than or
equal to the number of edges in L1 ∪L2 ∪P, and by Lemma 6.2.3, it is bounded from
above by ⌊

2 log∆−1 (n · (∆− 2) + 1)

⌋
+

⌊
2 log∆−1(2n)

⌋
+ 2 . (6.5)

Finally, we get that there exists a word c ∈ C such that the number of non-zero symbols
in it is bounded from above by either (6.4) or (6.5). By taking the highest among the two
bounds, the required conclusion is obtained.

6.4 Lower bounds on the minimum distance

The next theorem provides a lower bound on the minimum distance of the code C with
both CA and CB having minimum distance 2, for certain types of underlying Ramanujan
expanders.

Theorem 6.4.1 Let a code C be defined as in Section 2.1, where CA and CB are taken
as codes of length ∆ over GF(q) with minimum distance 2, and G = (V,E) is a ∆-regular
bipartite Ramanujan expander in [53], [62]. Then, the minimum distance of C is bounded
from below by

D ≥ 4

3
log∆−1(2n) .

Proof. Let c be a non-zero word of C, and let the edge set Y ⊆ E be a support of c, namely,

Y = {e ∈ E : ce 6= 0} .

We define a subgraph H of G as follows: the edge set of H is Y , and the vertices of H are all
endpoints of edges in Y . The degree of any vertex in the graph H is greater than or equal
to 2. Consider one of the connected components of H, denote it H1.

There exists a cycle in H1 — this can be shown by taking a vertex v ∈ H1 and making
a walk in H1, starting at this v, and using each edge only once. The walk will stop at some
vertex u either when the vertex u has been visited already, or when there are no unused
edges available at u. Since the degrees of all vertices in H1 are ≥ 2, the walk will stop when
entering the vertex u that has been visited already. We obtained the cycle in H1.

By using Lemma 6.2.4, the length of this cycle is at least g(G) ≥ 4
3
log∆−1(2n). Therefore,

the word c has at least g(G) non-zero symbols (indexed by the edges of this cycle). We obtain
that

w(c) ≥ 4

3
log∆−1(2n) ,
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thus completing the proof.

The following theorem presents a lower bound on the minimum distance of the code
C, when the constituent codes CA and CB have a small minimum distance. Obviously, the
theorem provides a very weak bound, not strong enough to imply a sufficient condition for
the asymptotic goodness of the code C.

Theorem 6.4.2 Consider the code C as above, with the constituent codes CA and CB of
minimum distance dA ≥ 2 and dB ≥ 2, respectively, and the underlying graph is as presented
in [53], [62]. Then, the minimum distance D of C is bounded from below by

D ≥ Ω
(
(2n)(1/3)·log∆−1(dA−1)(dB−1) − 1

)
.

Proof. Pick a non-zero word c ∈ C, and let the edge set Y ⊆ E be the support of c. We
define a subgraph H of G as follows: the edge set of H is Y , and the vertices of H are all
endpoints of edges in Y . Since the shortest cycle in G has length at least (4/3) · log∆−1(2n),
the same is true for the shortest cycle in the graph H.

Pick some vertex v0 in H which also belongs to A. We apply the Breadth First Search
(BFS) algorithm [26, Chapter 1] to H, starting at v0. Since (c)E(v0) ∈ CA, the vertex v0 has
at least dA neighbors in H. We denote dA of these neighbors as v1

1, v
1
2, · · · , v1

dA
(and ignore

the rest of the neighbors of v0). The BFS algorithm, when started at the vertex v0, will
search dA edges entering these vertices.

Since (c)E(v1
i ) ∈ CB, each v1

i (i ∈ 1, 2, · · · , dA) has at least dB − 1 neighbors in H (besides

v0). Each such neighbor is a neighbor of exactly one vertex among the vertices v1
i (i ∈

1, 2, · · · , dA) — otherwise there would be cycles of length 4 in H. Therefore, there are
dA · (dB − 1) vertices in H at distance 2 from the vertex v0. The BFS algorithm, when
started at vertex v0, will search dA · (dB − 1) edges entering these vertices.

We can continue the same argument by induction on the distance d from v0 as long
as d < 2/3 · log∆−1(2n). For even d, there will be dA(dA − 1)d/2−1(dB − 1)d/2 vertices at
distance d from v0 (and the same number of edges entering them); for odd d, there will be
dA(dA−1)(d−1)/2(dB−1)(d−1)/2 vertices at distance d from v0 (and the same number of edges
entering them). All the vertices that we encounter during this process, will be distinct from
each other (otherwise, there would be a cycle of length < 4/3 · log∆−1(2n) in H).

102



t
� �

dA
v0

��������������������

����������

XXXXXXXXXXXXXXXXXXXXr r rt
� �

dB − 1 t
� �

dB − 1 t
� �

dB − 1 t
� �dB − 1

v1
1 v1

2 v1
3 v1

dA

�
�

�
�

�

�
�
�
�
�

A
A
A
A
A. . .

v2
1 v2

dB−1 v2
dB

v2
2(dB−1) v2

3(dB−1) v2
(dA−1)(dB−1)+1 v2

dA(dB−1)

�
�

�
�

�

�
�
�
�
�

A
A
A
A
A. . .

�
�

�
�

�

�
�
�
�
�

A
A
A
A
A. . .

�
�

�
�

�

�
�
�
�
�

A
A
A
A
A. . .t t t t t t t t t t t t t t t tr r r

A
A
A
A
A

C
C
C
C
C

@
@

@
@

@t t t t

�
�

�
�

�

�
�
�
�
�

C
C
C
C
Ct t t t

�
�
�
�
�

C
C
C
C
C

A
A
A
A
At t t t

�
�
�
�
�

C
C
C
C
C

A
A
A
A
At t t t

�
�
�
�
�

C
C
C
C
C

A
A
A
A
At t t t

�
�

�
�

�

�
�
�
�
�

�
�

�
�

�t t t t

�
�

�
�

�

�
�
�
�
�

C
C
C
C
Ct t t tr r r

v3
1 . . . . . . v3

dA(dA−1)(dB−1)

Figure 6.1: Illustration of proof of Theorem 6.4.2.

Assume that d is the largest even integer such that d < (2/3) · log∆−1(2n). The total
number of edges in H that the BFS algorithm has passed through is bounded from below by

dA + dA(dB − 1) + dA(dA − 1)(dB − 1) + dA(dA − 1)(dB − 1)2 + · · ·
+ dA(dA − 1)(d−1)/2(dB − 1)(d−1)/2 + dA(dA − 1)d/2−1(dB − 1)d/2

= dAdB + dAdB(dA − 1)(dB − 1) + · · ·+ dA(dA − 1)d/2−1dB(dB − 1)d/2−1

= dAdB ·
((dA − 1)(dB − 1))d/2 − 1

(dA − 1)(dB − 1)− 1
.

Recall that the edges in H correspond to non-zero symbols in c, and thus we have obtained a
lower bound on the number of such symbols. We substitute d ≈ (2/3) · log∆−1(2n) to obtain
that

D ≥ dAdB ·
((dA − 1)(dB − 1))1/3·log∆−1(2n) − 1

(dA − 1)(dB − 1)− 1

> ((dA − 1)(dB − 1))1/3·log∆−1(2n) − 1

=
(
((dA − 1)(dB − 1))log(dA−1)(dB−1)(2n)

)1/3·log∆−1(dA−1)(dB−1)

− 1

= (2n)1/3·log∆−1(dA−1)(dB−1) − 1 ,

as required. The multiplicative constant in the result follows from the approximation d ≈
2
3
log∆−1(2n).
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It might be interesting to compare the lower bound in Theorem 6.4.2 with its counterpart
in Theorem 2.2.1. We can see that Theorem 6.4.2 provides a lower bound even for ‘weak’
codes CA and CB that do not satisfy the condition (6.2), while Theorem 2.2.1 does not provide
any non-trivial bound in that case.

Next, we consider the generalization of the code C as follows: for any vertex v ∈ B
we allow degG(v) be different from ∆. Thus, for vertices v ∈ B we use (possibly different)
constituent codes CB(v) of length |E(v)|, and so,

C =
{
c ∈ F

|E| : (c)E(v) ∈ CA for every v ∈ A

and (c)E(v) ∈ CB(v) for every v ∈ B
}
. (6.6)

The theorem below presents a lower bound on the minimum distance of such code C, that
take into account the expansion coefficient ζ .

Theorem 6.4.3 Let G = (V,E) be a bipartite (α, ζ)-expander graph with a vertex set
V = A∪B, A∩B = ∅, such that every edge in E had one endpoint in A and one in B. For
every vertex u ∈ A let degG(u) = ∆, and let δA > 1− ζ. Suppose that CA is a linear code of
length ∆ and relative minimum distance δAover F, and codes CB(v) (for every vertex v ∈ B)
are codes of lengths |E(v)| and minimum distance greater than or equal dB over F. Let C be
a code defined in (6.6) with respect to the graph G and the codes CA and CB(v) as above. If

δA
ζ + δA − 1

< dB , (6.7)

then the relative minimum distance of C is bounded from below by αδA.

Proof. Consider a non-zero codeword c ∈ C, and let Y be the support of c. Let S ⊆ A
be the set of vertices that are endpoints of edges in Y , and let σ = |S|/n. We assume (by
contradiction) that σ ≤ α, and (in the sequel) derive a necessary condition on the parameters
of the code C. This condition will yield the required bound.

Let T ⊆ B be the set of neighbors of the vertices in S. Denote the sets T0 and T1 as

T0 = {v ∈ T : ce = 0 for all e ∈ E(v)} ,

and
T1 = T\T0 .

Let K be the fraction of non-zero edges (edges that are the indexes of the non-zero symbols
in c) in the graph GS∪T (induced from G by the vertex set S ∪ T ), namely

K =
|Y |
|ES∪T |

.
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Then, obviously, K ≥ δA.

The total number of edges in the graph GS∪T is σ∆n. The number of edges e in GS∪T

such that ce = 0 is
σ∆n · (1− K) .

Every vertex in T0 has at least one zero edge in ES∪T incident with it, and therefore the
number of zero edges is at least |T0|. Thus,

σ∆n · (1− K) ≥ |T0| . (6.8)

From the graph expansion, and using the assumption σ ≤ α, we have that

σ∆n · ζ ≤ |T | . (6.9)

By combining (6.8) and (6.9), we obtain

|T1| = |T | − |T0| ≥ σ∆nζ − σ∆n(1− K) = σ∆n(ζ + K− 1) > 0 .

The number of non-zero edges in ES∪T is σ∆nK. Therefore, an ‘average’ vertex in T1 has
σK∆n/|T1| non-zero edges incident with it. However,

σK∆n

|T1|
≤ σK∆n

σ(ζ + K− 1)∆n
=

K

ζ + K− 1
. (6.10)

Therefore, there exists a vertex in T1 that has at most K

ζ+K−1
non-zero edges incident with

it. This is impossible if
K

ζ + K− 1
< dB . (6.11)

Next, note that the function

f(K) =
K

ζ + K− 1
= 1 +

1− ζ
ζ + K− 1

is monotonically decreasing in K. Therefore, from (6.7),

dB >
δA

ζ + δA − 1
≥ K

ζ + K− 1
,

in contradiction to the assumption that σ ≤ α.

We obtain that if condition (6.7) holds, then σ > α. Moreover, every vertex in S has
at least a fraction δA of edges corresponding to the non-zero symbols in c. Therefore, the
relative minimum distance of C is bounded from below by αδA.
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Example 6.4.1 Consider the case where dB = 2, δA = 1, and ζ > 1
2
. In this case,

condition (6.7) is met, and therefore the corresponding code C is good asymptotically.

Example 6.4.1 appears as a theorem for LDPC codes in [72, Chapter 8].

Example 6.4.2 Take a Ramanujan graph as in [53], [62], in which case ζ is (very close
to) 1

2
. Pick dB = 3 and δA = 1. In this case, again, condition (6.7) is met, and, therefore,

the relative minimum distance of C is at least αδA.

We compare condition (6.7) with condition (6.2). For the present example, Theorem 6.4.3
yields asymptotic goodness of the code C, while Theorem 2.2.1 does not.

Example 6.4.3 Take a Ramanujan graph as in [53], [62], in which case ζ is (almost) 1
2
.

In this example we would like to take a code CA with a relatively high minimum distance. For
non-trivial binary codes CA it holds that δA < 1

2
. However, we can take CA over F = GF(22).

There are such codes CA having δA close to 3
4
. In addition, take CB to have dB = 5.

For this selection of parameters condition (6.7) is satisfied, and the corresponding code
C is good asymptotically over F. Next, we can consider the code C over GF(2) rather than
over F. Thus, each symbol over F becomes a pair of binary bits. It is easy to see that if the
code C is asymptotically good over F, it will also be asymptotically good over GF(2). Such
a code C can be viewed as a binary code defined over the graph obtained from a Ramanujan
graph by duplicating each edge twice.

It is worth mentioning that for a selection of the code C as above, Theorem 2.2.1 does
not provide any non-trivial lower bound. The approach described in the present example
can be generalized toward large fields, thus producing asymptotically good code families for
any extension field of GF(2). In contrast, Theorem 2.2.1 does not provide any significant
bound on their minimum distance. From this observation, we believe that (in some cases)
stronger bounds on the minimum distance could be obtained when using the bounds on the
girth and the expansion properties of Ramanujan graphs, in addition to using separation
between the eigenvalues of the adjacency matrix.

As we see, in some cases Theorem 6.4.3 improves over Theorem 2.2.1 even for Ramanujan
graphs. However, the advantage of Theorem 6.4.3 becomes more evident for expanders that
have high values of ζ . There are known constructions for such graphs, in particular using a
so-called zig-zag construction (see [68]). The best such construction known to date appears
in [21]. For those expanders, the expansion factor ζ can be as close to 1 as desired (by paying
the price through large values of ∆). As for γG, for zig-zag constructions its value is believed
to be larger than for Ramanujan graphs. Thus, in [68], γG is shown to achieve O( 1

∆1/3 ) (at
most).
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In Appendix F, we present additional sufficient conditions on the asymptotic goodness of
the code C where the graph G is ∆-regular (although some of those bounds can be shown also
for the case where the degrees of the vertices in the set B are not all equal ∆). The proofs
therein are somewhat different from the proof of Theorem 6.4.3. However, as we also show
in Appendix F, these conditions are stronger compared with the condition in Theorem 6.4.3.

107



108



Chapter 7

Conclusions and Further Research

7.1 Summary

Over the last years, the practical success of LDPC codes has stimulated a lot of related
research. The problem of explicit construction of provably good LDPC codes was solved by
Sipser and Spielman by the invention of expander codes in [79], [81]. These codes were
the first known codes to admit linear-time encoding and decoding that corrects a con-
stant fraction of errors. Further works on expander codes, such as [8], [10], [11], [28], [29],
[38], [75], [80], [84], have demonstrated the potential of expander-based code constructions.
The expander codes were shown to be a key ingredient in nearly-MDS codes with the smallest
known alphabet size (admiting a linear-time encoding and decoding) [38], [75].

However, the field of expander codes seems to be not fully explored yet. In the sequel,
we will discuss the possible future directions for research on expander codes.

7.2 Our results

In this thesis, we presented several new constructions and bounds for expander codes. In
this section, we summarize the results presented in the current thesis.

In Chapter 2, we improved on the known bounds on the parameters of expander codes,
which were presented in a series of works of Barg and Zémor [8], [10], [84], and in a
work of Guruswami and Indyk [38]. Thus, in a work, which preceded [8] (see [80]),
we improved on the number of correctable errors for the codes in [84] by a factor of
(approximately) 2.

After publication of the results in [8], we (slightly) improved on the lower bound on
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the minimum distance of expander codes therein. We showed that the codes therein
can be viewed as a concatenation of a nearly-MDS expander code with an appropriate
inner code. This nearly-MDS code admits a linear-time encoding and decoding, and
has a smaller alphabet size compared to its counterpart presented in [38].

By employing this approach, we were able to present a new decoding algorithm for
expander codes together with a novel analysis. We showed that our algorithm can
correct (slightly) more errors than its counterpart in [8]. Moreover, the decoding time
of our algorithm has only a polynomial dependence on the degree ∆ of the underlying
graph. In contrast, for the decoder in [8], this dependence may be exponential.

In Chapter 3, we investigated the decoding error probability of codes as a function of their
block length. We showed that the existence of codes with polynomially small decoding
error probability implies the existence of codes with exponentially small decoding error
probability. Specifically, we assumed that there exists a family of codes of length N and
rate R = (1− ε)C (C is the capacity of a binary symmetric channel), whose decoding
probability decreases inverse polynomially in N . Then, we showed that if the decoding
probability decreases sufficiently fast, but still only inverse polynomially fast in N , then
there exists another such family of codes whose decoding error probability decreases
exponentially fast in N . Moreover, if the decoding time complexity of the assumed
family of codes is polynomial in N and 1/ε, then the decoding time complexity of the
presented family is linear in N and polynomial in 1/ε. We compared these codes to
the codes of Barg and Zémor [8], [10]. We showed that the latter families cannot be
tuned to have exponentially decaying (in N) error probability, and at the same time
to have decoding time complexity linear in N and polynomial in 1/ε.

In Chapter 4, we presented a family of so-called generalized expander codes. We showed
that generalized expander codes have distance-rate trade-offs which are (asymptoti-
cally) at least as good as those of the codes in [8]. We presented a linear-time decoding
algorithm for the generalized codes. Finally, using techniques as in [9], we showed that
binary generalized expander codes have distance-rate trade-offs which (asymptotically)
attain the parameters in [9].

In Chapter 5, we considered expander codes defined over non-bipartite graphs. The not-
necessarily bipartite expander code model was first studied by Sipser and Spielman
in [79]. We presented a reduction, which allows to decode those codes in linear time
while correcting a number of errors up to (almost) half of the minimum distance of
those codes. This improves a fraction of correctable errors in [79] by a factor of (ap-
proximately) 24.

In Chapter 6, we investigated expander codes with ‘weak’ constituent codes. We tried
to answer the question: what are the weakest constituent codes such that the overall
expander code family is asymptotically good? We found lower and upper bounds on
the minimum distance of the expander codes having codes of minimum distance 2
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as their constituent codes. In this case, we showed that the overall code cannot be
asymptotically good. Finally, we derived some sufficient conditions on the parameters
of the constituent codes, such that the overall expander code family is asymptotically
good.

7.3 Future directions

In this section, we mention some of the interesting research problems related to expander
and LDPC codes.

Distance–rate trade-offs. A trade-off between the rate and the relative minimum dis-
tance is one of the main characteristics of a code family. An explicitly constructible
binary expander codes, which are decodable in linear time, were presented in [9]. The
distance–rate trade-offs for these codes lie above the Zyablov bound. In Chapter 4, we
achieve a similar result for slightly different family of expander-based codes. In that
chapter, we also discussed some possible direction for a potential improvement of the
bound in [9]. Further improvement of that bound would be a nice result in coding
theory.

Alphabet size of nearly-MDS codes. In this thesis, we presented a construction of
both linear-time encodable and decodable nearly-MDS expander codes of rate r and
relative minimum distance δ with the size of the code alphabet given by

exp

{
1

ǫ3
log

1

ǫ

}
,

such that r + δ ≥ 1− ǫ for any small ǫ. Generally, smaller alphabet sizes could result
in faster encoding and decoding algorithms. It might be interesting to further reduce
the size of the code alphabet. On the other hand, it would also be interesting to derive
a lower bound on the alphabet size of codes that are based on expander graphs, or
possibly Ramanujan-type expander graphs.

Other types of expander graphs. In this thesis, we presented several improvements
on the bounds on the minimum distance and on the number of correctable errors of
expander codes based on Ramanujan graphs. The techniques involved in the analy-
sis were based on the eigenvalues properties of expander graphs. However, explicit
constructions for other types of expanders were discovered recently, for example the
the zig-zag construction in [21]. The construction therein has better vertex-expansion
properties than Ramanujan graphs, but, on the other hand, their eigenvalue separa-
tion properties are not as good as those of the Ramanujan counterparts. It would be
interesting to derive similar bounds on the minimum distance and on the decoding
radius of linear-time decoders for expander codes based on non-Ramanujan expanders,
in particular on the expanders in [21].

111



Generalized expander codes. In Chapter 4, we presented generalized expander codes.
We showed that generalized expander code parameters are at least as good as the para-
meters of the expander codes in [9]. We also presented a decoding algorithm for those
generalized expander codes. It might be interesting to further explore the properties of
generalized expander codes. An interesting question to answer is whether generalized
expander codes have any advantage over the known expander codes, similarly to the
strength of irregular LDPC codes compared with regular LDPC codes.

Expander codes with weak congtituent codes. In Chapter 6, we presented several
necessary conditions for the asymptotic goodness of expander codes. However, the
main question formulated in that chapter was not answered in full. That is, what are
the weakest constituent codes such that the overall expander code is asymptotically
good? To answer that question, further investigation should be done.

Minimum pseudo-code weight. It is known that the minimum pseudo-code weight [47]
is closely related to the minimum code distance. Building codes with a good minimum
pseudo-code weight leads to good LDPC codes. Recently, some work on the minimum
pseudo-code weight of expander codes was done by Kelley and Sridhara in [44]. In
particular, the authors derived some bounds on the minimum pseudo-code weight of
expander codes over the BEC and BSC channels. No such bound has been derived
yet over the AWGN channel. These bounds over the BEC and BSC can be slightly
improved, using techniques presented in this thesis. It would also be interesting to
obtain similar bounds over the AWGN channel, and probably to obtain more extensive
characteristics of pseudo-weight distribution of expander codes, since this can probably
improve our understanding of LDPC codes.

Study of small codes. The lower bounds on the number of correctable errors, as found
in the literature, do apply to the asymptotic behavior of codes but do not adequately
explain the behavior of codes of a given length. For such codes of small length, the
corresponding bipartite graphs necessarily have small cycles, which the analysis of [55]
cannot handle. The study of small codes can be useful for practical purposes. Some
preliminary work on short LDPC codes constructed from expander graphs, was done
in [42], but there is still much yet to be studied.

Constrained LDPC codes. Below we mention two important classes of constraints.

The (d, k)-runlength-limited (RLL) constraint, where between any two consecu-
tive ones in a binary sequence there must appear at least d and at most k zeros.
The properties of (d, k)-RLL sequences together with encoding-decoding methods
were extensively studied in the literature: see for example [39, Chapters 4, 5],
[60], [61].

The dc-free constraint, where the number of ones in every binary codeword is equal
to the number of zeros. Codes that satisfy dc-free constraint were studied, for
example, in [39, Chapters 9, 10].
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Codes that satisfy these or other constraints belong to the class of constrained codes.

The subject of constrained low-density parity-check codes has not been extensively
studied despite its great practical importance. The construction of efficient dc-free
LDPC codes or run-length-limited constrained LDPC codes, that have good encoding
and decoding algorithms, is another interesting research problem, that is to be explored.
Using well-structured expander graphs could possibly simplify this problem.

Conclusions

In this thesis, we combined classical techniques from coding theory, like GMD-decoding,
concatenated code analysis, and others, with expander-based constructions. We were
able to obtain new constructions of linear-time encodable and decodable LDPC codes
that have good trade-offs between their relative minimum distance and the code rate.
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Appendix A

We provide here the proofs of Lemmas 2.2.2 and 2.3.2.

Given a bipartite graph G = (A : B,E), we associate with G a |A| × |B| real matrix XG
whose rows and columns are indexed by A and B, respectively, and (XG)u,v = 1 if and only
if {u, v} ∈ E. With a proper ordering on A ∪ B, the matrix XG is related to the adjacency
matrix of G by

AG =



 0 XG

XT
G 0



 . (A.1)

Lemma A.1 Let G = (A : B,E) be a bipartite ∆-regular graph where |A| > 1. Then
∆2 is the largest eigenvalue of the (symmetric) matrix XT

GXG and the all-one vector 1 is a
corresponding eigenvector. The second largest eigenvalue of XT

GXG is γ2
G∆2.

Proof. We compute the square of AG,

A2
G =



 XGXT
G 0

0 XT
GXG



 ,

and recall the following two known facts:

(i) XGXT
G and XT

GXG have the same set of eigenvalues, each with the same multiplicity [56,
Theorem 16.2].

(ii) If λ is an eigenvalue of AG, then so is −λ, with the same multiplicity [22, Proposi-
tion 1.1.4].

We conclude that λ is an eigenvalue of AG if and only if λ2 is an eigenvalue XT
GXG; further-

more, when λ 6= 0, both these eigenvalues have the same multiplicities in their respective
matrices. The result readily follows.
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For real column vectors x,y ∈ Rm, let 〈x,y〉 be the scalar product xT y and ‖x‖ be the
norm

√
〈x,x〉.

Lemma A.2 Let G = (A : B,E) be a bipartite ∆-regular graph where |A| = n > 1 and
let s = (su)u∈A and t = (tu)u∈B be two column vectors in Rn. Denote by σ and τ the averages

σ =
1

n

∑

u∈A

su and τ =
1

n

∑

u∈B

tu ,

and let the column vectors y and z in Rn be given by

y = s− σ · 1 and z = t− τ · 1 .

Define the vector x ∈ R2n by

x =

(
s

t

)
.

Then,
|〈x, AGx〉 − 2στ∆n| ≤ 2γG∆‖y‖ · ‖z‖ .

Proof. First, it is easy to see that XG1 = XT
G 1 = ∆ · 1 and that 〈y, 1〉 = 〈z, 1〉 = 0;

these equalities, in turn, yield the relationship:

〈y, XGz〉 = 〈s, XGt〉 − στ∆n .

Secondly, from (A.1) we get that

〈x, AGx〉 = 2〈s, XGt〉 .

Hence, the lemma will be proved once we show that

|〈y, XGz〉| ≤ γG∆‖y‖ · ‖z‖ . (A.2)

Let
λ1 ≥ λ2 ≥ . . . ≥ λn

be the eigenvalues of XT
GXG and let v1,v2, . . . ,vn be corresponding orthonormal eigenvectors

where, by Lemma A.1,

λ1 = ∆2 , λ2 = γ2
G∆2 , and v1 = (1/

√
n) · 1 .

Write

z =
n∑

i=1

Bivi ,
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where Bi = 〈z,vi〉. Recall, however, that B1 = (1/
√
n) · 〈z, 1〉 = 0; so,

‖XGz‖2 = 〈z, XT
GXGz〉

=
〈 n∑

i=2

Bivi,
n∑

i=2

λiBivi

〉
=

n∑

i=2

λiB
2
i ‖vi‖2

≤ λ2

n∑

i=2

B2
i = λ2‖z‖2 = γ2

G∆2‖z‖2 .

The desired result (A.2) is now obtained from the Cauchy-Schwartz inequality.

Lemma A.3 Let G = (A : B,E) be a bipartite ∆-regular graph where |A| = n > 1 and
let χ : (A ∪ B)→ R be a function on the vertices of G. Define the function w : E → R and
the average EG{w} by

w(e) = χ(u)χ(v) for every edge e = {u, v} in G

and

EG{w} =
1

∆n

∑

e∈E

w(e) .

Then ∣∣∣EG{w} − EA
G {χ} · EB

G {χ}
∣∣∣ ≤ γG

√
VarAG {χ} · VarBG {χ} ,

where

EA
G {χi} =

1

n

∑

u∈A

(χ(u)i) ,

EB
G {χi} =

1

n

∑

u∈B

(χ(u)i) ,

VarAG {χ} = EA
G {χ2} − (EA

G {χ})2 ,

and
VarB

G {χ} = EB
G {χ2} − (EB

G {χ})2 .

Proof. Define the column vectors

s = (χ(u))u∈A , t = (χ(u))u∈B ,

and

x =

(
s

t

)
,
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and denote by σ and τ the averages

σ =
1

n

∑

u∈A

su and τ =
1

n

∑

u∈B

tu .

The following equalities are easily verified:

EG{w} =
〈x, AGx〉

2∆n
,

EA
G {χ} = σ , EB

G {χ} = τ ,

VarAG {χ} =
1

n
· ‖s− σ · 1‖2 ,

and

VarB
G {χ} =

1

n
· ‖t− τ · 1‖2 .

The result now follows from Lemma A.2.

Proof of Lemma 2.2.2. Using the notation of Lemma A.3, write

EG{w} =
1

∆n

∑

u∈A

∑

v∈N (u)

χ(u)χ(v) , (A.3)

EA
G {χ} =

1

n

∑

u∈A

χ(u) = σ , (A.4)

and

EB
G {χ} =

1

n

∑

u∈B

χ(u) = τ . (A.5)

Since the range of χ is restricted to the interval [0, 1], we have

EA
G {χ2} ≤ EA

G {χ} and EB
G {χ2} ≤ EB

G {χ} ;

hence, the values VarAG {χ} and VarBG {χ} can be bounded from above by

VarAG {χ} ≤ σ − σ2 and VarBG {χ} ≤ τ − τ 2 . (A.6)

Substituting (A.3)–(A.6) into Lemma A.3 yields

∣∣∣∣∣
1

∆n

(∑

u∈A

∑

v∈N (u)

χ(u)χ(v)
)
− στ

∣∣∣∣∣ ≤ γG
√
σ(1−σ)τ(1−τ) ;
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so,

1

∆n

∑

u∈A

∑

v∈N (u)

χ(u)χ(v)

≤ στ + γG
√
σ(1−σ)τ(1−τ)

= (1−γG)στ + γG
√
στ
(√

στ +
√

(1−σ)(1−τ)
)

≤ (1−γG)στ + γG
√
στ ,

as claimed.

Proof of Lemma 2.3.2. We compute lower and upper bounds on the average

1

∆n

∑

v∈B

∑

u∈N (v)

χ(u)χ(v) .

On the one hand, this average equals

1

∆n

∑

v∈B:
χ(v)>0

χ(v)
∑

u∈N (v)

χ(u)

︸ ︷︷ ︸
≥δB∆/2

≥ 1

∆n
· δB∆

2

∑

v∈B

χ(v)

︸ ︷︷ ︸
τn

=
δBτ

2
,

where the inequality follows from the assumed conditions on χ. On the other hand, this
average also equals

1

∆n

∑

u∈A

∑

v∈N (u)

χ(u)χ(v) ≤ (1−γG)στ + γG
√
στ ,

where the inequality follows from Lemma 2.2.2. Combining these two bounds we get

δBτ

2
≤ (1−γG)στ + γG

√
στ ,

and the result is now obtained by dividing by γGτ and re-arranging terms.
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Appendix B

When analyzing the complexity of the algorithm in Figure 2.1, one can notice that the
decoder D ∈ {DA,DB} needs to be applied at vertex u, only if (z)E(u) has been modified
since the last application of D at that vertex. Based on this observation, we prove the
following lemma.

Lemma B.1 The number of (actual) applications of the decoders DA and DB in the
algorithm in Figure 2.1 can be bounded from above by ω · n, where

ω = 2 ·





log

(
∆β
√
σ

β − σ
)

log

(
δAδB
4γ2

G

)





+
1 +

δA
δB

1−
(

4γ2
G

δAδB

)2 .

Proof. Define iT by

iT = 2 ·





log

(
∆β
√
σ

β − σ
)

log

(
δAδB
4γ2

G

)





.

It is easy to verify that (
δAδB
4γ2

G

)iT /2(
1√
σ
−
√
σ

β

)
≥ ∆ . (B.1)

In the first iT iterations in Figure 2.1, we apply the decoder D (which is either DA or DB)
at most iT · n times.

Next, we evaluate the total number of applications of the decoder D in iterations i =
iT +1, iT +2, · · · , ν. We hereafter use the notations Ui and Si as in the proof of Theorem 2.3.1.
Recall that we need to apply the decoder D to (z)E(u) for a vertex u ∈ Ui+2, only if at least
one entry in (z)E(u) — say, the one that is indexed by the edge {u, v} ∈ E(u) — has been
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altered during iteration i + 1. Such an alteration may occur only if v is a vertex in Ui+1

with an adjacent vertex in Si. We conclude that D needs to be applied at vertex u during
iteration i + 2 only if u ∈ N (N (Si)). The number of such vertices u, in turn, is at most
∆2 |Si| = ∆2 · σin.

We now sum the values of ∆2σin over iterations i = iT + 1, iT + 2, · · · , ν:

∆2n ·
ν∑

i=iT +1

σi = ∆2n




⌊(ν−1)/2⌋∑

j=iT /2

σ2j+1 +

⌊(ν−2)/2⌋∑

j=iT /2

σ2j+2





≤ ∆2n ·
⌊(ν−1)/2⌋∑

j=iT /2

σ2j+1

(
1 +

δA
δB

)
, (B.2)

where the last inequality is due to (2.13).

From (2.17) (and by neglecting a positive term), we obtain

1√
σi+1

≥
(
δAδB
4γ2

G

)i/2(
1√
σ
−
√
σ

β

)

for even i ≥ iT . Therefore, the expression in (B.2) is bounded from above by

∆2n

(
1 +

δA
δB

)
·
(

4γ2
G

δAδB

)iT

(
1−

(
4γ2

G
δAδB

)2
)(

1√
σ
−
√
σ

β

)2
≤

∆2n

(
1 +

δA
δB

)
· 1

∆2

1−
(

4γ2
G

δAδB

)2 =

n

(
1 +

δA
δB

)

1−
(

4γ2
G

δAδB

)2 ,

where the inequality follows from (B.1).

Adding now the number of applications of the decoder D during the first iT iterations,
we conclude that the total number of applications of the decoder D is at most ω · n, where

ω = iT +
1 +

δA
δB

1−
(

4γ2
G

δAδB

)2 .
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Appendix C

We provide here the proof of Lemma 3.3.1.

We analyze the error exponent, following the outline of the analysis of Forney [30, Chapter
4.2]. Let ςi, i = 1, · · · , n, be a random variable which equals 1 if no inner decoding error is
made while decoding the i-th inner codeword, and −1 otherwise. The outer code will fail to
decode correctly if and only if

ς
△
=

1

n

n∑

i=1

ςi < (1− 2β) .

Denote
µ(−s) △

= ln
(
Probe(Cin) · es + (1− Probe(Cin)) · e−s

)
.

Using the Chernoff bound, we obtain

Probe(CΦ) = Prob

(
1

n

n∑

i=1

ςi < (1− 2β)

)

< e−n(s(2β−1)−µ(−s)) .

Optimization of the exponent over values of s yields that the maximum of the expression

s(2β − 1)− µ(−s)

is achieved when

s = 1
2
ln

(1− Probe(Cin)) · 2β
Probe(Cin) · (2− 2β)

,

and the maximum is

s(2β − 1)− µ(−s) = − β ln (Probe(Cin))− (1− β) ln (1− Probe(Cin))

+ β ln (β) + (1− β) ln (1− β) ,

thus completing the proof.
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Appendix D

We provide here the proof of Lemma 3.5.1.

Consider the value of the binary entropy function at the point p + x for small x > 0.
Using Taylor series around point p,

H2(p+ x) = H2(p) + H′
2(p) · x+

1

2
H′′

2(p) · x2 +O(x3) .

By calculation of the derivatives of the entropy function, one obtains

H′
2(χ) = − log2 χ− χ ·

1

χ
· log2 e + log2(1− χ)

+ (1− χ) · 1

1− χ · log2 e = log2

(
1− χ
χ

)
;

and

H′′
2(χ) = log2 e ·

(
− 1

1− χ −
1

χ

)
=

log2 e

χ(χ− 1)
.

Therefore,

H2(p+ x) = H2(p) + log2

(
1− p
p

)
· x+

log2 e

p(p− 1)

x2

2
+O(x3) .

By applying the inverse of the binary entropy function on both sides of the equation, we get

p+ x = H−1
2 (H2(p+ x))

= H−1
2

(
H2(p) + log2

(
1− p
p

)
· x+

log2 e

p(p− 1)
· x

2

2
+O(x3)

)
.

Denote by θ the value of log2

(
1−p

p

)
· x+ log2 e

p(p−1)
· x2

2
, thus obtaining

p+ x = H−1
2

(
H2(p) + θ +O(x3)

)
. (D.1)
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By solving the quadratic equation

θ =

(
ln

(
1− p
p

)
· x+

1

p(p− 1)
· x

2

2

)
· log2 e ,

or equivalently

x2 + 2p(p− 1) ln

(
1− p
p

)
x− 2θp(p− 1)

log2 e
= 0 ,

we obtain two solutions for the intermediate x, namely

x =
1

2

(

− 2p(p− 1) ln

(
1− p
p

)
±
√

4p2(p− 1)2 ln2

(
1− p
p

)
+

8θp(p− 1)

log2 e

)

= −p(p− 1) ln

(
1− p
p

)
±
√(

p(p− 1) ln

(
1− p
p

))2

+
2θp(p− 1)

log2 e
;

however, only one of these solutions is positive:

x = −p(p− 1) ln

(
1− p
p

)
+

√(
p(p− 1) ln

(
1− p
p

))2

+
2θp(p− 1)

log2 e
.

The latter equality can be rewritten as

x = p(p− 1) ln

(
1− p
p

)
·
(

− 1 +

√

1 +
2θ

p(p− 1) (ln ((1− p)/p))2 log2 e

)

. (D.2)

Using Taylor series approximation for small values of χ,

√
1 + χ = 1 +

1

2
χ− 1

8
χ2 +O(χ3) ,

Equality (D.2) becomes

x = p(p− 1) ln

(
1− p
p

)
·
(
−1 + 1 +

θ

p(p− 1) (ln ((1− p)/p))2 log2 e

− 1

2
· θ2

p2(p− 1)2 (ln ((1− p)/p))4 (log2 e)2
+O(θ3)

)

=
θ

log2 ((1− p)/p) −
1

2
· θ2 log2 e

p(p− 1) (log2 ((1− p)/p))3 +O(θ3) . (D.3)

We substitute the evaluation of value of x in (D.3) into Equation (D.1). Thus, we obtain

H−1
2

(
H2(p) + θ +O(θ3)

)
= p+

θ

log2 ((1− p)/p)

−1

2
· θ2 log2 e

p(p− 1) (log2 ((1− p)/p))3 +O(θ3) . (D.4)
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If p < 1
2

is fixed and θ is small, then the value of H2(p) + θ is bounded away from 1. In this
case, the derivative of H−1

2 (χ) at point χ = H2(p) + θ is bounded, and, therefore

H−1
2

(
H2(p) + θ +O(θ3)

)
= H−1

2 (H2(p) + θ) +O(θ3) .

Then, the equality (D.4) becomes

H−1
2 (H2(p) + θ) = p+

θ

log2 ((1− p)/p) −
1

2
· θ2 log2 e

p(p− 1) (log2 ((1− p)/p))3 +O(θ3) .

Finally, we substitute θ = ε(1− H2(p)) and get that

H−1
2 (H2(p) + ε(1− H2(p))) = p+

ε(1− H2(p))

log2 ((1− p)/p)

−1

2
· ε2(1− H2(p))

2 log2 e

p(p− 1) (log2 ((1− p)/p))3 +O(ε3) ,

thus completing the proof of the lemma.
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Appendix E

We provide here the proofs of Lemmas 4.4.2 and 4.4.4.

Proof of Lemma 4.4.2. Below, we prove equality (4.23) (the proof of equality (4.22)
is similar).

We have

|ES∪T 1| =
∑

v∈T 1

degS(v)

=
∑

v∈T 1∩Rα

degS(v) +
∑

v∈T 1\Rα

degS(v)

=
∑

v∈T 1∩Rα

∆(σ + o∆(1)) + n∆ · o∆(1) ,

where the last transition is due to Lemma 4.4.1. We obtain that

|ES∪T 1|
n∆

= στ1 + o∆(1) . (E.1)

Next, we rewrite the definition of Γ, and, using the definition of Γv, we obtain

|ES∪T 1| · Γ =
∑

e∈ES∪T1

wb(e) =
∑

v∈T 1

∑

e∈ES∪{v}

wb(e) =
∑

v∈T 1

degS(v) · Γv . (E.2)

The right-hand side of (E.2) can be rewritten as
∑

v∈T 1

degS(v)Γv =
∑

v∈T 1∩Rα

degS(v) · Γv +
∑

v∈T 1\Rα

degS(v) · Γv

=
∑

v∈T 1∩Rα

∆Γv · (σ + o∆(1)) + n∆ · o∆(1) . (E.3)

We combine the expressions in (E.1), (E.2) and (E.3) to obtain that

Γ =
1

|T 1|
∑

v∈T 1∩Rα

Γv + o∆(1) ,
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and the claim follows by an application of Lemma 4.4.1.

Proof of Lemma 4.4.4. Lemma 4.4.2 implies that

∑

v∈T 1

Γv ≤ (Γ + ε) · |T 1| .

Consider a subset T ′ ⊆ T 1 of vertices for which Γv ≤ Γ + ε. Then, obviously, the ratio
|T ′|/|T 1| is bounded from below by a constant independent of ∆. On the other hand, the
subset T ′′ ⊆ T ′ of the vertices that do not satisfy (4.21) (when taking Rα = T ′′) can be
made arbitrarily small for small values of α. Therefore, T ′\T ′′ 6= ∅, and we can pick a vertex
v ∈ T ′\T ′′.

Let wv be a relative q-ary weight of a vector indexed by E(v). Denote by α′ the fraction
of non-zero edges in ES∪{v}. The vertex v was selected such that degS(v) is very close to
σ∆, and, therefore, α′ = wv/σ (when ignoring the vanishing terms). From the definitions of
Bv and Γv, we have

Bv = Γv/α
′ . (E.4)

Lemma 4.4.3 implies

wv ≥
1− rB

H2(Bv)
,

which, in turn, using (E.4) and α′ = wv/σ, yields

σ ≥ 1− rB

α′ · H2(Γv/α′)
.

Since the binary entropy function is ∩-convex, we have

H2(Γv) ≥ α′ · H2(Γv/α
′)

for any value of Γv and α′ ≤ 1.

Finally, we use the fact that Γv ≤ Γ (while neglecting the ε term) and H̄2(·) is nonde-
creasing, in order to conclude that

H2(Γv) ≤ H̄2(Γ) ,

which proves the claim of the lemma.
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Appendix F

We derive here sufficient conditions on the asymptotic goodness of the code C defined as in
Theorem 6.4.3, and show that the condition in Theorem 6.4.3 is weaker than the presented
sufficient conditions. The results in this appendix are formulated for the code having a
∆-regular biparite underlying graph G = (V = A : B,E) (the regularity here means that
the value degG(v) is constant for all v ∈ V ). However, the results in Lemma F.1 and
Theorems F.2, F.3 may be shown for the graphs with degG(v) constant only for the vertices
v ∈ A (rather than v ∈ V ). In that case, for vertices v ∈ B we use (possibly different)
constituent codes CB(v) of length |E(v)| having minimum distance greater than or equal dB.

Lemma F.1 Let G be a bipartite ∆-regular (α, ζ)-expander. Let C be the code defined
as in Section 2.1, with the linear codes CA and CB over F of minimum distances dA = δA∆
and dB, respectively. Let c = (ce)e∈E be a non-zero codeword in C with a support Y (namely,
Y = {e ∈ E : ce 6= 0}), and let σn and τn be the sizes of subsets of vertices in A and B,
respectively, that are endpoints of the edges in Y . Then, for σ ≤ α,

(1− ζ)σ∆ ≥ τ(dB − 1) , (F.1)

and for τ ≤ α,
(1− ζ)τ∆ ≥ σ(dA − 1) . (F.2)

Proof. Let S ⊆ A be the set of vertices that are endpoints of edges in Y . Then |S| = σn.
Suppose that σ ≤ α. We define T , T0 and T1 as in the proof of Theorem 6.4.3, namely
T ⊆ B is the set of neighbors of vertices in S. The sets T0 and T1 are defined as

T0 = {v ∈ T : ce = 0 for all e ∈ E(v)} ,

and
T1 = T\T0 .

Note that T1 = τn.
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The total number of edges in the graph GS∪T (the graph induced by the vertex set S∪T )
is σ∆n. Each edge in ES∪T (the edge set of the graph GS∪T ) is incident with a vertex either
in T0 or in T1.

Edges incident with vertices in T1. Each vertex in T1 has at least dB non-zero edges in
ES∪T incident with it (in addition to possible zero edges in ES∪T ). Therefore, the
number of such edges is at least

dB · τn . (F.3)

Edges incident with vertices in T0. Due to the expansion property, the number of ver-
tices in T is at least ζ∆ ·σn. The number of vertices in T1 is τn. Therefore, the number
of vertices in T0 is at least

ζ∆ · σn− τn . (F.4)

For each vertex in T0, there is at least one edge in ES∪T incident with it. There-
fore, the number of edges incident with vertices in T0 is bounded from below by the
expression (F.4).

We sum the sizes of the sets of these two types of edges incident with T0 and T1 to obtain
the lower bound on the number of edges in ES∪T . This yields

σ∆n ≥ dBτn + ζ∆σn− τn .

After some simplifications, we obtain (F.1), as required. The inequality (F.2) is obtained
similarly, by switching between the sets A and B.

Theorem F.2 Let C be the code defined as in Lemma F.1, with the linear codes CA and
CB over F of minimum distance dA = dB. Let G be a bipartite (α, ζ)-expander. If

(1− ζ)∆ < dB − 1 , (F.5)

then the relative minimum distance of C is bounded from below by αdA/∆.

Proof. Let c ∈ C, σ and τ be defined as in Lemma F.1. Suppose (w.l.o.g.) that σ ≤ τ .
We assume (to the contrary) that σ ≤ α. Observe that the conditions of Lemma F.1 are
satisfied, and, therefore, the inequality (F.1) holds. Then, from (F.1), using σ ≤ τ , we obtain

(1− ζ)∆ ≥ dB − 1 , (F.6)

thereby reaching a contradiction.

Recall that dA = dB. In case σ > τ , we obtain the same expression (F.6) by using (F.2).

Finally, we have that if condition (F.5) holds, then min{σ, τ} > α, and, therefore, the
relative minimum distance of C is bounded from below by αdA/∆.
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Theorem F.3 Let C be the code defined as in Lemma F.1, with the linear codes CA and
CB over F of minimum distances dA and dB, respectively. Let G be a bipartite (α, ζ)-expander.
If

(1− ζ)2∆2 < (dA − 1)(dB − 1) , (F.7)

then the relative minimum distance of C is bounded from below by min {αdA/∆, αdB/∆}.

Proof. Let c ∈ C, σ and τ be defined as in Lemma F.1. We assume (to the contrary)
that σ ≤ α and τ ≤ α. Observe that the conditions of Lemma F.1 are satisfied, and,
therefore, the inequalities (F.1) and (F.2) are true. Then, we multiply (F.1) and (F.2), and
reduce the resulting inequality by the factor στ , yielding

(1− ζ)2∆2 ≥ (dA − 1)(dB − 1) . (F.8)

As before, we obtain that if the condition (F.7) holds, then max{σ, τ} > α, and, therefore,
the relative minimum distance of C is bounded from below by either αdA/∆, or αdB/∆, thus
completing the proof.

In the next example we compare the condition for asymptotic goodness of C in Theo-
rem F.3 with its counterpart in Theorem 6.4.3.

Example F.1 Take δA very close to (but smaller than) 1
2
, set dB = 3 and ζ = 3

4
. Then,

the condition (6.7) is satisfied, thus ensuring that the overall code C is asymptotically good.

On the other hand, the condition (F.7) is not satisfied for big values of ∆, and therefore
it cannot be used to show the asymptotic goodness of C.

It can be shown that if the condition in Theorem F.3 is satisfied for some values of ζ ,
dA and dB, then the condition in Theorem 6.4.3 is satisfied for these values. Indeed, rewrite
condition (F.7) as

(1− ζ)2∆2 < (dA − 1)(dB − 1) =

(
dB

dA

(dA − 1)

)
·
(
dA

dB

(dB − 1)

)
.

Therefore, either

(1− ζ)∆ <
dA

dB
(dB − 1) (F.9)

or

(1− ζ)∆ <
dB

dA
(dA − 1) . (F.10)

The inequality (F.9) can be re-written as

dB(1− ζ)∆ < dA(dB − 1) ,
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and
dA < dAdB − dB(1− ζ)∆ = dB(dA − (1− ζ)∆) .

The latter inequality is equivalent to inequality (6.7) — this can be seen by dividing both
sides by dA − (1− ζ)∆.

If the inequality (F.10) holds, then similarly, by switching between dA and dB, it can be
re-written in the form (6.7).

Conclusion. Theorem 6.4.3 (possibly, with switching between CA and CB) yields Theo-
rem F.3.

142


