
Designs, Codes and Cryptography manuscript No.
(will be inserted by the editor)

Probabilistic Algorithm for Finding Roots of Linearized
Polynomials

Vitaly Skachek · Ron M. Roth

Abstract A probabilistic algorithm is presented for finding a basis of the root
space of a linearized polynomial

L(x) =
t∑

i=0

Lix
qi

over Fqn . The expected time complexity of the presented algorithm is O(nt)
operations in Fqn .

Keywords Linearized polynomials · Probabilistic algorithms · Root-finding
algorithms · Symbolic GCD

1 Introduction

Let q be a power of a prime and n be a positive integer. A linearized polynomial
over Fqn (with respect to Fq) is a polynomial of the form

L(x) =
t∑

i=0

Lix
qi

,

where Li ∈ Fqn .
Linearized polynomials were first investigated by Ore (see [12], [13]). Ref-

erences [9, §3.4] and [11, §4.9] contain rather extensive summaries of the prop-
erties of linearized polynomials. In particular, it is known that the mapping
Fqn → Fqn defined by x 7→ L(x) is a linear mapping over Fq. Conversely, every

Vitaly Skachek
Claude Shannon Institute, University College Dublin, Belfield, Dublin 4, Ireland.
E-mail: vitaly.skachek@ucd.ie

Ron M. Roth
Computer Science Department, Technion, Haifa 32000, Israel.
E-mail: ronny@cs.technion.ac.il



2 Vitaly Skachek, Ron M. Roth

linear mapping Fqn → Fqn over Fq can be realized as a linearized polynomial
of degree less than qn. These properties of linearized polynomials imply that
the roots of a given linearized polynomial over Fqn in any extension field of
Fq form a vector space over Fq. For applications of linearized polynomials to
coding theory, see [2], [5], [6], [15], or [16].

One problem that arises in some of those applications is finding a basis over
Fq of the root space in Fqn of a given linearized polynomial L(x) of degree
qt < qn over Fqn . To this end, we can first find a representation of the linear
mapping L : Fqn → Fqn as an n×n matrix A over Fq, according to some basis
of Fqn over Fq, and then compute a basis of the kernel of A in Fn

q . The fastest
algorithms currently known for finding the kernel of an n× n matrix over Fq

have time complexity which grows at least as n2+ε, where ε ≈ 0.376 (see [1]
and [4]; this lower bound on the complexity does not take into account the
time required to compute the matrix A from L(x)).

Alternatively, a basis of the root space of L(x) can be found by an adapta-
tion of Rabin’s probabilistic algorithm for root finding of general polynomials
over fields of even characteristic [14], taking into account the special structure
and properties of linearized polynomials (see also the improved analysis of
Ben-Or [3]). It can be shown that such an adapted version of Rabin’s algo-
rithm can find one nonzero root of a linearized polynomial in expected time
complexity of O(nt2) operations in Fqn .

In this note, we present a fast algorithm for finding a whole basis of the
root space (in Fqn) of a linearized polynomial over Fqn , in expected time com-
plexity of O(nt) operations in Fqn . Hereafter, by “operations in Fqn” we mean
any of the four arithmetic operations—addition, subtraction, multiplication, or
division—in Fqn , as well as raising an element to the qth power (referred to here
as q-exponentiation). When we represent Fqn as a ring of polynomials mod-
ulo an irreducible polynomial of degree n over Fq, each of the four arithmetic
operations in Fqn can be implemented using O(n log2 n log log n) arithmetic op-
erations in Fq (see [1, §8.3] and [8, §§8.3, 9.1, and 11.1]), and q-exponentiation
can be implemented by O(log q) multiplications in Fqn . (Moreover, for a range
of values of q and n, the representation of Fqn according to certain normal
bases over Fq allows us to implement all operations in Fqn—including q-
exponentiation—using O(n log2 n log log n) arithmetic operations in Fq [7].)
Hence, our algorithm has time complexity of O(n2t log2 n log log n log q) oper-
ations in Fq, making it faster than the aforementioned algorithms whenever
t = o(nε/(log2 n log log n log q)).

2 Symbolic GCD

In this section, we summarize several definitions and properties that will be
used in the sequel. Most properties can be found in Ore [12, Ch. 1].

Let L(x) and M(x) be linearized polynomials over Fqn . The symbolic prod-
uct of L(x) with M(x) is defined by

L(x)⊗M(x) = L(M(x)) .



Probabilistic Algorithm for Finding Roots of Linearized Polynomials 3

Symbolic product satisfies associativity and distributivity (with respect to or-
dinary polynomial addition), but in general it does not satisfy commutativity;
i.e. L(x)⊗M(x) and M(x)⊗ L(x) are typically not equal.

Let L(x) and M(x) be linearized polynomials over Fqn where M(x) 6=
0. Using an algorithm akin to ordinary “long division,” one can find unique
linearized polynomials Q(x) and R(x) over Fqn such that

L(x) = Q(x)⊗M(x) + R(x) and deg R(x) < deg M(x) . (1)

When R(x) = 0, we say that M(x) is a right symbolic divisor of L(x). The
polynomial M(x) is a right symbolic divisor of L(x), if and only if M(x) divides
L(x) in the ordinary sense (see [12, p. 561] for the “only if” part; the “if” part
is easy to prove).

Let L(x) and M(x) be linearized polynomials over Fqn , not both zero. A
right symbolic greatest common divisor of L(x) and M(x) is a monic linearized
polynomial G(x) over Fqn of a largest degree such that G(x) is a right symbolic
divisor of both L(x) and M(x).

Proposition 1 [12, Theorem 1] Let L(x) and M(x) be linearized polynomials
over Fqn , not both zero. The right symbolic greatest common divisor of L(x)
and M(x) is unique and equals the return value of the algorithm in Figure 1.

The unique right symbolic greatest common divisor of L(x) and M(x) will
be denoted by rgcd(L(x),M(x)).

Proposition 2 [12, Theorem 2] Let L(x) and M(x) be linearized polynomials
over Fqn , not both zero. Then

rgcd(L(x),M(x)) = gcd(L(x),M(x)) ,

where gcd(L(x),M(x)) is the monic (ordinary) greatest common divisor of
L(x) and M(x).

Similarly to (1), for any two linearized polynomials L(x) and M(x) 6= 0
over Fqn there exist unique linearized polynomials Q(x) and R(x) over Fqn

such that

L(x) = M(x)⊗Q(x) + R(x) and deg R(x) < deg M(x) .

When R(x) = 0, we say that M(x) is a left symbolic divisor of L(x). In general,
the set of left symbolic divisors of a given linearized polynomial may differ from
its set of right symbolic divisors. However, we do have the following result.

Input: linearized polynomials L(x) 6= 0 and M(x) over Fqn ;
R−1(x)←M(x); R0(x)← L(x);
for (i← 1; Ri−1(x) 6= 0; i++)

Ri(x)← Ri−2 −Qi(x)⊗Ri−1(x), where deg Ri(x) < deg Ri−1(x);
normalize Ri−2(x) to be monic;
Output: Ri−2(x).

Fig. 1 Algorithm for computing rgcd(L(x), M(x)).



4 Vitaly Skachek, Ron M. Roth

Lemma 3 A linearized polynomial M(x) over Fqn is a right symbolic divisor
(or an ordinary divisor) of the polynomial xqn − x, if and only if M(x) is a
left symbolic divisor of that polynomial.

Proof Starting with the “only if” part, suppose that

xqn

− x = P (x)⊗M(x)

for some linearized polynomial P (x) over Fqn . Next write

xqn

− x = M(x)⊗Q(x) + R(x) (2)

for two linearized polynomials Q(x) and R(x) such that deg R(x) < deg M(x).
Computing the symbolic product of P (x) with both sides of (2) we obtain

P (x)⊗ (xqn

− x) = P (x)⊗M(x)⊗Q(x) + P (x)⊗R(x)
= (xqn

− x)⊗Q(x) + P (x)⊗R(x) .

Now, the two polynomials P (x) ⊗ (xqn − x) and (xqn − x) ⊗ Q(x) vanish at
each element of Fqn ; therefore, so must P (x)⊗R(x). On the other hand, since
deg R(x) < deg M(x), we have

deg(P (x)⊗R(x)) < deg(P (x)⊗M(x)) = deg(xqn

− x) = qn .

Hence, P (x)⊗R(x) = 0 and, so, R(x) = 0.
The proof of the “if” part is similar.

3 Finding roots of linearized polynomials

Figure 2 presents a probabilistic algorithm for finding a basis over Fq of the
roots in Fqn of a given linearized polynomial L(x) over Fqn . Assuming that
L(x) 6= 0, we let t denote logq deg L(x).

By Proposition 2 we have that the computed linearized polynomial G(x)
in Figure 2 equals gcd(L(x), xqn − x). So, the roots of G(x) in Fqn are the

Input: linearized polynomial L(x) over Fqn ;

G(x)← rgcd(L(x), xqn − x); /∗ use the algorithm in Figure 1 ∗/
denote r = logq deg G(x);

compute a linearized polynomial H(x) such that xqn − x = G(x)⊗H(x);
for (j ← 0; j < r; j++) {

do {
select at random an element zj ∈ Fqn ;
}
while H(zj) is in the linear span of {H(z`)}j−1

`=0 over Fq ;
}
Output: basis elements H(z0), H(z1), . . . , H(zr−1).

Fig. 2 Algorithm for finding a basis of the root space of L(x) in Fqn .



Probabilistic Algorithm for Finding Roots of Linearized Polynomials 5

roots of L(x) in that field, and the dimension of the linear space of these roots
is r = logq deg G(x). Lemma 3 implies that G(x) is also a left symbolic divisor
of xqn − x and, thus, the polynomial H(x) in Figure 2 is well defined.

Given that the algorithm in Figure 2 halts, it is rather straightforward
to see that it returns a basis of the root space of G(x) and, hence, of L(x).
The rest of this section is devoted to analyzing the time complexity of the
algorithm.

Lemma 4 The polynomial G(x) in Figure 2 can be computed using less than
3(n + 1)(t + 1) operations in Fqn .

Proof When t ≤ n (the typical case), we apply the algorithm in Figure 1 to
R−1(x) = xqn−x and R0(x) = L(x). Otherwise, we switch the roles of R−1(x)
and R0(x).

Denote by ν the largest value of i in Figure 1 for which Ri(x) 6= 0 and,
for i = −1, 0, 1, . . . , ν, let τi stand for (logq deg Ri) + 1. Using symbolic long
division to implement each iteration in the main loop in Figure 1, iteration i
requires less than

3(τi−2 − τi−1 + 1)τi−1

operations in Fqn . Hence, the overall number of operations in Fqn that are
required to compute G(x) (without applying the last normalization step in
Figure 1) is less than three times the value of

ν+1∑
i=1

(τi−2 − τi−1 + 1)τi−1

≤ (τ−1 − τ0 + 1)τ0 +
ν+1∑
i=2

(
τi−2(τi−2 − 1)− τi−1(τi−1 − 1)

)
≤ τ−1τ0

= (n + 1)(t + 1) .

The result follows.

Lemma 5 The polynomial H(x) in Figure 2 can be computed using less than
3(n− r + 1)(r + 1) operations in Fqn (where r = logq deg G(x)).

Proof Compute H(x) by symbolic long division.

Lemma 6 Given the polynomial H(x), the expected number of operations in
Fqn needed to compute the basis elements H(z0),H(z1), . . . ,H(zr−1) in Fig-
ure 2 is less than 3n(r + 2).

Proof In iteration j (which selects zj), the values

H(z0),H(z1), . . . ,H(zj−1)

are linearly independent over Fq. Since deg H(x) = qn−r and H(x) (being a
right symbolic divisor of xqn − x) divides xqn − x in the ordinary sense, it



6 Vitaly Skachek, Ron M. Roth

follows that the size of the kernel of the linear mapping x 7→ H(x) is qn−r.
Therefore, when zj is randomly selected from Fqn , the probability that H(zj)
is not in the linear span of {H(z`)}j−1

`=0 equals

qn − qn−r+j

qn
= 1− qj−r ,

and the expected number of random selections until H(zj) satisfies this prop-
erty is

1
1− qj−r

= 1 +
1

qr−j − 1
≤ 2 .

Summing over j, the expected overall number of elements that are randomly
selected in Figure 2 is

r−1∑
j=0

(
1 +

1
qr−j − 1

)
< r + 2 .

Now, for each selected element zj , we compute H(zj) using at most 3(n−
r) + 1 operations in Fqn . Then, we check whether H(zj) is in the linear span
of the set {H(z`)}j−1

`=0 . To this end, we assume that the j elements of this set
have been written as row vectors in Fn

q thereby forming a j × n matrix over
Fq, and that this matrix has been brought to an upper-echelon form; we then
append H(zj) as a (j+1)st row to that matrix. Checking whether that row is
linearly dependent of the previous rows can be done by Gaussian elimination,
which, in turn, requires no more than 2j + 1 operations in Fqn (specifically,
each addition of rows in the matrix amounts to one addition in Fqn , and each
multiplication by a scalar from Fq is over-counted as one multiplication in
Fqn). Hence, the overall expected number of operations in Fqn needed to find
H(z0),H(z1), . . . ,H(zr−1) is at most

r−1∑
j=0

(
3(n− r) + 1 + (2j + 1)

) (
1 +

1
qr−j − 1

)

< 3(n− r)(r + 2) + 4
r−1∑
j=0

(j + 1)

< 3n(r + 2) .

Summing up the results of Lemmas 4, 5, and 6, we conclude that the
overall number of operations in Fqn of the algorithm in Figure 2 is less than
9(n + 1)(t + 2).

Acknowledgements The work of the first author was done in part while he was with
the Computer Science Department, Technion—Israel Institute of Technology, Haifa 32000,
Israel. This research was supported by the Israel Science Foundation (grant No. 746/04).



Probabilistic Algorithm for Finding Roots of Linearized Polynomials 7

References

1. A.V. Aho, J.E. Hopcroft, J.D. Ullman, The Design and Analysis of Computer Al-
gorithms. Reading, Massachusetts: Addison-Wesley, 1974.

2. D. Augot, P. Charpin, N. Sendrier, Studying the locator polynomials of minimum
weight codewords of BCH codes, IEEE Trans. Inform. Theory, 38 (1992), 960–973.

3. M. Ben-Or, Probabilistic algorithms in finite fields, Proc. 22nd Annual IEEE Symp.
Foundations of Computer Science (FOCS’1981), Nashville, Tennessee (1981), 394–398.

4. D. Coppersmith, S. Winograd, Matrix multiplication via arithmetic progressions, J.
Symb. Comput., 9 (1990), 251–280.

5. P. Delsarte, Bilinear forms over a finite field, with applications to coding theory, J.
Comb. Theory A, 25 (1978), 226–241.

6. E.M. Gabidulin, Theory of codes with maximum rank distance, Probl. Inform.
Transm., 21 (1985), 1–12.

7. S. Gao, J. von zur Gathen, D. Panario, V. Shoup, Algorithms for exponentiation
in finite fields, J. Symb. Comput., 29 (2000), 879–889.

8. J. von zur Gathen, J. Gerhard, Modern Computer Algebra. Cambridge, UK: Cam-
bridge University Press, 1999.

9. R. Lidl, H. Niederreiter, Finite Fields, Second Edition. Cambridge, UK: Cambridge
University Press, 1997.

10. P. Loidreau, A Welch–Berlekamp like algorithm for decoding Gabidulin codes, Proc.
4th International Workshop on Coding and Cryptography (WCC’2005), Bergen, Nor-
way (2005), 36–45.

11. F.J. MacWilliams, N.J.A. Sloane, The Theory of Error-Correcting Codes. Amster-
dam, The Netherlands: North-Holland, 1977.

12. O. Ore, On a special class of polynomials, Trans. Amer. Math. Soc., 35 (1933), 559–584.
13. O. Ore, Contributions to the theory of finite fields, Trans. Amer. Math. Soc., 36 (1934),

243–274.
14. M.O. Rabin, Probabilistic algorithms in finite fields, SIAM J. Comput., 9 (1980), 273–

280.
15. R.M. Roth, Maximum-rank array codes and their application to crisscross error cor-

rection, IEEE Trans. Inform. Theory, 37 (1991), 328–336.
16. R.M. Roth, Probabilistic crisscross error correction, IEEE Trans. Inform. Theory, 43

(1997), 1425–1436.


