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Distributed Storage Systems

Enormous amounts of data are stored in a huge number of
servers.

Occasionally servers fail.

Failed server is replaced and the data has to be copied to the
new server.
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Distributed Storage Systems

Enormous amounts of data are stored in a huge number of
servers.

Occasionally servers fail.

Failed server is replaced and the data has to be copied to the
new server.
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Example: EvenOdd Code

In the context of disk storage: [Blaum, Brady, Bruck, Menon
1995].

Example

X1 Y1 X1 + Y1 X1 + Y2

X2 Y2 X2 + Y2 X2 + Y1

All the information can be recovered by using any two out of four
nodes.
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Types of Repair

Exact repair

Functional repair

Exact repair of the systematic part
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Functional Repair

The number of information blocks: M

The number of information nodes: n

The total number of active nodes: N

Number of stored bits per node: α

Maximal number of nodes used in repair: m

Number of bits read from each node: t

Total repair bandwidth: γ = m · t.
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Functional Repair

The number of information blocks: M

The number of information nodes: n

The total number of active nodes: N

Number of stored bits per node: α

Maximal number of nodes used in repair: m

Number of bits read from each node: t

Total repair bandwidth: γ = m · t.

Example

X1 Y1 X1 + Y1 X1 + Y2

X2 Y2 X2 + Y2 X2 + Y1

Here: N = 4, n = 2, M = 4, m = 2, t = 2 blocks, γ = 4 blocks.
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Fundamental Trade-off

[Dimakis, Godfrey, Wu, Wainwright, Ramchandran 2008]

Theorem

The following point is feasible:

α ≥

{

M
n

γ ∈ [f (0),+∞)
M−g(i)γ

n−i
γ ∈ [f (i), f (i − 1))

,

where

f (i) ,
2Mm

(2n − i − 1)i + 2n(m − n + 1)

g(i) ,
(2m − 2n + i + 1)i

2m
,

and m < N − 1.
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Special Cases

MSR: Minimum storage regenerating codes.

MBR: Minimum bandwidth regenerating codes.
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Special Cases

MSR: Minimum storage regenerating codes.

MBR: Minimum bandwidth regenerating codes.

MSR codes

(α, γ) =

(

M

n
,
M

n
·
N − 1

N − n

)

.
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Special Cases

MSR: Minimum storage regenerating codes.

MBR: Minimum bandwidth regenerating codes.

MSR codes

(α, γ) =

(

M

n
,
M

n
·
N − 1

N − n

)

.

MBR codes

(α, γ) =

(

M

n
·

2N − 2

2N − n − 1
,
M

n
·

2N − 2

2N − n − 1

)

.
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Code Locality

[Gopalan, Huang, Simitci, Yekhanin 2012]

Vitaly Skachek Problems in DSS



Code Locality

[Gopalan, Huang, Simitci, Yekhanin 2012]

Definition

Let [n, k , d ]q be a linear code C over Fq. We say that the C has
locality r , if the value of any symbol in C can be recovered by
accessing some r other coordinates of C.
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Code Locality

[Gopalan, Huang, Simitci, Yekhanin 2012]

Definition

Let [n, k , d ]q be a linear code C over Fq. We say that the C has
locality r , if the value of any symbol in C can be recovered by
accessing some r other coordinates of C.

Bound

The following connection holds:

n − k ≥
⌈k

r

⌉

+ d − 2 .

The Pyramid codes are shown to achieve this bound.
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Code Availability

[Rawat, Papailiopoulos, Dimakis, Vishwanath 2014]
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Code Availability

[Rawat, Papailiopoulos, Dimakis, Vishwanath 2014]

Definition

Let [n, k , d ]q be a linear code C over Fq. We say that the C has
(r , s)-availability, if the value of any symbol in C can be recovered
by accessing s disjoint groups of other symbols, each of size at
most r .
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Code Availability

[Rawat, Papailiopoulos, Dimakis, Vishwanath 2014]

Definition

Let [n, k , d ]q be a linear code C over Fq. We say that the C has
(r , s)-availability, if the value of any symbol in C can be recovered
by accessing s disjoint groups of other symbols, each of size at
most r .

Bound

The following connection holds:

n − k ≥
⌈ks

r

⌉

+ d − s − 2 .

There are explicit constructions of codes that achieve this bound
for a variety of parameters.
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Batch Codes

Proposed in [Ishai, Kushilevitz, Ostrovsky, Sahai 2004].

Can be used in:

Load balancing.
Private information retrieval.
Distributed storage systems.
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Batch Codes

Proposed in [Ishai, Kushilevitz, Ostrovsky, Sahai 2004].

Can be used in:

Load balancing.
Private information retrieval.
Distributed storage systems.

Constructions:

[Ishai et al. 2004]: algebraic, expander graphs, subsets, RM
codes, locally-decodable codes

Vitaly Skachek Problems in DSS



Prior Art

Design-based constructions and bounds:

[Stinson, Wei, Paterson 2009]

[Brualdi, Kiernan, Meyer, Schroeder 2010]

[Bujtas, Tuza 2011]

[Bhattacharya, Ruj, Roy 2012]

[Silberstein, Gal 2013]
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Prior Art

Design-based constructions and bounds:

[Stinson, Wei, Paterson 2009]

[Brualdi, Kiernan, Meyer, Schroeder 2010]

[Bujtas, Tuza 2011]

[Bhattacharya, Ruj, Roy 2012]

[Silberstein, Gal 2013]

Application to distributed storage:

[Rawat, Papailiopoulos, Dimakis, Vishwanath 2014]

[Silberstein 2014]
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Batch Codes

Definition [Ishai et al. 2004]

C is an (n,N,m,M, t)Σ batch code over Σ if it encodes any string
x = (x1, x2, · · · , xn) ∈ Σn into M strings (buckets) of total length
N over Σ, namely y1, y2, · · · , yM , such that for each m-tuple
(batch) of (not neccessarily distinct) indices i1, i2, · · · , im ∈ [n], the
symbols xi1 , xi2 , · · · , xim can be retrieved by m users, respectively,
by reading ≤ t symbols from each bucket, such that xiℓ is
recovered from the symbols read by the ℓ-th user alone.
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Batch Codes

Definition [Ishai et al. 2004]

C is an (n,N,m,M, t)Σ batch code over Σ if it encodes any string
x = (x1, x2, · · · , xn) ∈ Σn into M strings (buckets) of total length
N over Σ, namely y1, y2, · · · , yM , such that for each m-tuple
(batch) of (not neccessarily distinct) indices i1, i2, · · · , im ∈ [n], the
symbols xi1 , xi2 , · · · , xim can be retrieved by m users, respectively,
by reading ≤ t symbols from each bucket, such that xiℓ is
recovered from the symbols read by the ℓ-th user alone.

Definition

If t = 1, then we use notation (n,N,m,M)Σ for it. Only one
symbol is read from each bucket.
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Batch Codes (cont.)

Definition

An (n,N,m,M, t)q batch code is linear, if every symbol in every
bucket is a linear combination of original symbols.
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Batch Codes (cont.)

Definition

An (n,N,m,M, t)q batch code is linear, if every symbol in every
bucket is a linear combination of original symbols.

In what follows, consider linear codes with t = 1 and N = M: each
encoded bucket contains just one symbol in Fq.
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Linear Batch Codes: Our Settings

For simplicity we refer to a linear (n,N = M,m,M)q batch code as
[M, n,m]q batch code.
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Linear Batch Codes: Our Settings

For simplicity we refer to a linear (n,N = M,m,M)q batch code as
[M, n,m]q batch code.

Let x = (x1, x2, · · · , xn) be an information string.

Let y = (y1, y2, · · · , yM) be an encoding of x.

Each encoded symbol yi , i ∈ [M], is written as
yi =

∑n
j=1 gj ,ixj .

Form the matrix G:

G =
(

gj ,i

)

j∈[n],i∈[M]
;

the encoding is y = xG.
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Code Comparison

Locally repairable codes, codes with locality.

0 0001 1 1 1?
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Code Comparison

Codes with locality and availability.

0 0001 1 1 1

y y
4 4

0

y
4

0
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Code Comparison

Batch codes.

0 0001 1 1 1

x x x
2 2 3

0
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Retrieval

Theorem

Let C be an [M, n,m]q batch code. It is possible to retrieve
xi1 , xi2 , · · · , xim simultaneously if and only if there exist m
non-intersecting sets T1,T2, · · · ,Tm of indices of columns in G,
and for Tr there exists a linear combination of columns of G
indexed by that set, which equals to the column vector eTir , for all
r ∈ [m].
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Retrieval

Theorem

Let C be an [M, n,m]q batch code. It is possible to retrieve
xi1 , xi2 , · · · , xim simultaneously if and only if there exist m
non-intersecting sets T1,T2, · · · ,Tm of indices of columns in G,
and for Tr there exists a linear combination of columns of G
indexed by that set, which equals to the column vector eTir , for all
r ∈ [m].

Example

[Ishai et al. 2004] Consider the following linear binary batch code C
whose 4× 9 generator matrix is given by

G =









1 0 1 0 0 0 1 0 1
0 1 1 0 0 0 0 1 1
0 0 0 1 0 1 1 0 1
0 0 0 0 1 1 0 1 1









.
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Retrieval (cont.)

Example

Let x = (x1, x2, x3, x4), y = xG.
Assume that we want to retrieve the values of (x1, x1, x2, x2). We
can retrieve (x1, x1, x2, x2) from the following set of equations:















x1 = y1
x1 = y2 + y3
x2 = y5 + y8
x2 = y4 + y6 + y7 + y9

.

It is straightforward to verify that any 4-tuple (xi1 , xi2 , xi3 , xi4),
where i1, i2, i3, i4 ∈ [4], can be retrieved by using columns indexed
by some four non-intersecting sets of indices in [9]. Therefore, the
code C is a [9, 4, 4]2 batch code.
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Properties of Linear Batch Codes

Theorem

Let C be an [M, n,m]2 batch code C over F2. Then, G is a

generator matrix of the classical error-correcting [M, n,≥ m]2
code.
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Properties of Linear Batch Codes

Theorem

Let C be an [M, n,m]2 batch code C over F2. Then, G is a

generator matrix of the classical error-correcting [M, n,≥ m]2
code.

Example

The converse is not true. For example, take G to be a generator
matrix of the classical [4, 3, 2]2 ECC as follows:

G =





1 1 1 1
0 1 0 1
0 0 1 1



 .

Let x = (x1, x2, x3). Then, it is impossible to retrieve (x2, x3).
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Bounds on the Parameters

Various well-studied properties of linear ECCs, such as
MacWilliams identities, apply also to linear batch codes (for
t = 1, M = N and q = 2).
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Bounds on the Parameters

Various well-studied properties of linear ECCs, such as
MacWilliams identities, apply also to linear batch codes (for
t = 1, M = N and q = 2).

A variety of bounds on the parameters of ECCs, such as
sphere-packing bound, Plotkin bound, Griesmer bound,
Elias-Bassalygo bound, McEliece-Rodemich-Rumsey-Welch
bound apply to the parameters of [M, n,m]2 batch codes.
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File Synchronization Problem

Before synchronization:

User A: f1, f2, f3 and f4.
User B: f1, f3, f4.
User C : f2, f3.
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File Synchronization Problem

Before synchronization:

User A: f1, f2, f3 and f4.
User B: f1, f3, f4.
User C : f2, f3.

After synchronization:

Users A,B ,C : f1, f2, f3 and f4.
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Prior Art

Mitzenmacher and Varghese ’2012
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Prior Art

Mitzenmacher and Varghese ’2012

Parameters to Consider

Communication cost Communication(A): the worst case
number of bits sent between the devices;

Computational complexity Computation(A): the worst case
number of operations performed at each device;

Time Time(A): the length of the largest chain of messages in
the communication protocol.
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Prior Art

Mitzenmacher and Varghese ’2012

Parameters to Consider

Communication cost Communication(A): the worst case
number of bits sent between the devices;

Computational complexity Computation(A): the worst case
number of operations performed at each device;

Time Time(A): the length of the largest chain of messages in
the communication protocol.

k is the total number of objects in possession of A and B ;

d is the number of objects possessed by only one user;

u is the size of the space where the objects are taken from.
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Prior Art

Minsky, Trachtenberg and Zippel ’2003: characteristic
polynomials.
Communication(A) = O(d log u),
Computation(A) = O(d3),
Time(A) = O(log k)
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Prior Art

Minsky, Trachtenberg and Zippel ’2003: characteristic
polynomials.
Communication(A) = O(d log u),
Computation(A) = O(d3),
Time(A) = O(log k)

Goodrich and Mitzenmacher ’2011: invertible Bloom filters.
Communication(A) = O(d log u),
Computation(A) = O(d),
Time(A) = 3

Mitzenmacher and Varghese ’2012: Biff codes.
Communication(A) = O(d log u),
Computation(A) = O(k log u),
Time(A) = 3.

with high probability.
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Subspace Synchronization for Two Users

Finite field F with q elements.

Two users w and v .

The users own vector spaces U ⊆ F
n and V ⊆ F

n,
respectively.

Goal: w and v own vector space U + V .
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Subspace Synchronization for Two Users

Finite field F with q elements.

Two users w and v .

The users own vector spaces U ⊆ F
n and V ⊆ F

n,
respectively.

Goal: w and v own vector space U + V .

Algorithm A

(1) The user w draws a nonzero vector x ∈ U randomly and
uniformly and communicates it to v .

(2) The node v checks if x ∈ V . If not, performs

V ← V ⊕ 〈x〉 .

(3) Repeat (1)-(2) for Θ(d) rounds.

(4) Switch the roles of w and v .
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Subspace Synchronization for Two Users (cont.)

With high probability,
Communication(A) = O(d · n log q),
Computation(A) = O(k2 · n),
Time(A) = 2.
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Subspace Synchronization for Two Users (cont.)

With high probability,
Communication(A) = O(d · n log q),
Computation(A) = O(k2 · n),
Time(A) = 2.

The scheme is easily extendable extendable to networks with many
users.
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Using Reed-Solomon Codes

Consider a classical [n, k, d]-linear code C over the finite field
F = Fq, such that n ≥ 2m for some integer m > 0. (For example,
RS code with n + 1 = k + d). Let the (n− k)× n parity-check
matrix of C be

H = [h1 | h2 | · · · | hn] ,

hi ’s are the columns of H.

Vitaly Skachek Problems in DSS



Using Reed-Solomon Codes

Consider a classical [n, k, d]-linear code C over the finite field
F = Fq, such that n ≥ 2m for some integer m > 0. (For example,
RS code with n + 1 = k + d). Let the (n− k)× n parity-check
matrix of C be

H = [h1 | h2 | · · · | hn] ,

hi ’s are the columns of H.

With every vector x ∈ {0, 1}m associate a unique integer index
φ(x) ∈ [n]. If x1 6= x2, we have φ(x1) 6= φ(x2). Assume that
O = {xi}i∈S is a collection of objects for some S ⊆ [n].
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Using Reed-Solomon Codes

Consider a classical [n, k, d]-linear code C over the finite field
F = Fq, such that n ≥ 2m for some integer m > 0. (For example,
RS code with n + 1 = k + d). Let the (n− k)× n parity-check
matrix of C be

H = [h1 | h2 | · · · | hn] ,

hi ’s are the columns of H.

With every vector x ∈ {0, 1}m associate a unique integer index
φ(x) ∈ [n]. If x1 6= x2, we have φ(x1) 6= φ(x2). Assume that
O = {xi}i∈S is a collection of objects for some S ⊆ [n].

Represent the collection O by the vector space

Φ(O) ,
〈

hφ(x)
〉

x∈O .
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Using Reed-Solomon Codes and Subspaces

In order to perform reconciliation of two sets of objects, O1 and
O2, the corresponding vector spaces V1 and V2 are constructed,
such that Vi = Φ(Oi ) for i = 1, 2. Then the synchronization
algorithm A is applied to V1 and V2.
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Using Reed-Solomon Codes and Subspaces

In order to perform reconciliation of two sets of objects, O1 and
O2, the corresponding vector spaces V1 and V2 are constructed,
such that Vi = Φ(Oi ) for i = 1, 2. Then the synchronization
algorithm A is applied to V1 and V2.

Performance

Communication(A) = O(d2m) = O(d2 log u),
Computation(A) = O(d2 · u).
Time(A) = 2
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Network Coding with Hashing Approach

Denote by OA = {xi ∈ F
n}i∈XA

and OB = {xi ∈ F
n}i∈XB

the
set of objects, which are unique to A and to B , respectively.

OC = {xi ∈ F
n}i∈XO

the set of objects which are possessed by
both A and B .

Let s = |XA| and τ = |XA ∪ XO |.

As before, let d = |XA ∪ XB | be the number of different files
for A and B .

Assume that s, or a tight upper bound on it, is known to both
A and B .
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User A

User A creates s arbitrary linear combinations of the form

yj =
∑

i∈XA∪XO

αj ,ixi , j ∈ [s] ,

The protocol uses a hash function H : F
n → K, where K is

the finite set of possible keys.

User A applies H to xi for all i ∈ XA ∪ XO to produce hash
values H(xi ) for all i .

These values are transmitted to B .
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User A

User A creates s arbitrary linear combinations of the form

yj =
∑

i∈XA∪XO

αj ,ixi , j ∈ [s] ,

The protocol uses a hash function H : F
n → K, where K is

the finite set of possible keys.

User A applies H to xi for all i ∈ XA ∪ XO to produce hash
values H(xi ) for all i .

These values are transmitted to B .

A transmits to B the following data:

the header h, which contains the sorted list of values H(xi ),
i ∈ XA ∪ XO ;

for all j ∈ [s], the vector pairs (αj , yj).
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User A (cont.)

Let X be a τ × n matrix over F, whose rows are all vectors xi
indexed by [τ ]. Similarly, let Y be a s × n matrix, whose rows are
vectors yi for all i ∈ [s]. Denote

A =











α1,1 α1,2 · · · α1,τ

α2,1 α2,2 · · · α2,τ
...

...
. . .

...
αs,1 αs,2 · · · αs,τ











.

The transmitted vector pairs can be viewed as the rows of the
matrix

A · [ Iτ | X ] = [ A | Y ] ,

where

X =











x1
x2
...
xτ











and Y = AX =











y1
y2
...
ys











.
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User B

1 Compute values of the function H applied to the vectors in its
possession. By comparing these values to the values in the
header h, it finds the indices corresponding to elements in XO .

2 For each j ∈ [s], subtract vectors
∑

i∈XO
αj ,ixi from yj .

Compute the resulting matrix with s rows:

[

Ã | Ỹ
]

,

where rows of Ỹ are the vectors

ỹj = yj −
∑

i∈XO

αj ,ixi ,

and Ã is an invertible s × s matrix obtained from A by
removing the columns corresponding to the vectors indexed by
XO .
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User B (cont.)

Compute the matrix

[

I | Ã
−1

Ỹ
]

=
[

I | X̃
]

,

where, if there are no hashing collisions, X̃ is exactly the matrix X

having rows corresponding to the vectors indexed by XA.
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User B (cont.)

Compute the matrix

[

I | Ã
−1

Ỹ
]

=
[

I | X̃
]

,

where, if there are no hashing collisions, X̃ is exactly the matrix X

having rows corresponding to the vectors indexed by XA.

Peformance

Communication(A) = O(d · n log q)
Computation(A) = O(k2 · n)
If s is known, then Time(A) = 2. If s is not known, then
Time(A) = 3.
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Using a Pool of Hash Functions

Large pool of different hash functions (known to both users).

In each round, the hash function is selected randomly from
the pool.

User A sends to B the ID number of the selected hash
function.
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Using a Pool of Hash Functions

Large pool of different hash functions (known to both users).

In each round, the hash function is selected randomly from
the pool.

User A sends to B the ID number of the selected hash
function.

Assume a collection S of k different files in {0, 1}n. Let H be a set
of all functions H : {0, 1}n → K, where K is the set of all possible
keys. Assume that k ≪ |K| ≪ 2n.
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Using a Pool of Hash Functions

Large pool of different hash functions (known to both users).

In each round, the hash function is selected randomly from
the pool.

User A sends to B the ID number of the selected hash
function.

Assume a collection S of k different files in {0, 1}n. Let H be a set
of all functions H : {0, 1}n → K, where K is the set of all possible
keys. Assume that k ≪ |K| ≪ 2n.

Theorem

If K is selected such that |K| > c · (k − 1)2 for some large constant
c > 0, then the probability of success is at least e−1/c .
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Thank you!

Questions?
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