
On some data processing problems

arising in the distributed storage systems

Vitaly Skachek

Joint works with Helger Lipmaa and with Michael Rabbat

COST Action IC1104 Meeting, Palmela, Portugal

18 September 2014

Vitaly Skachek Problems in DSS

Distributed Storage Systems

Enormous amounts of data are stored in a huge number of
servers.

Occasionally servers fail.

Failed server is replaced and the data has to be copied to the
new server.

Vitaly Skachek Problems in DSS

Distributed Storage Systems

Enormous amounts of data are stored in a huge number of
servers.

Occasionally servers fail.

Failed server is replaced and the data has to be copied to the
new server.

Vitaly Skachek Problems in DSS

Distributed Storage Systems

Enormous amounts of data are stored in a huge number of
servers.

Occasionally servers fail.

Failed server is replaced and the data has to be copied to the
new server.

Vitaly Skachek Problems in DSS

Distributed Storage Systems

Enormous amounts of data are stored in a huge number of
servers.

Occasionally servers fail.

Failed server is replaced and the data has to be copied to the
new server.

Vitaly Skachek Problems in DSS

Distributed Storage Systems

Enormous amounts of data are stored in a huge number of
servers.

Occasionally servers fail.

Failed server is replaced and the data has to be copied to the
new server.

Vitaly Skachek Problems in DSS

Example: EvenOdd Code

In the context of disk storage: [Blaum, Brady, Bruck, Menon
1995].

Example

X1 Y1 X1 + Y1 X1 + Y2

X2 Y2 X2 + Y2 X2 + Y1

All the information can be recovered by using any two out of four
nodes.

Vitaly Skachek Problems in DSS

Types of Repair

Exact repair

Functional repair

Exact repair of the systematic part

Vitaly Skachek Problems in DSS

Functional Repair

The number of information blocks: M

The number of information nodes: n

The total number of active nodes: N

Number of stored bits per node: α

Maximal number of nodes used in repair: m

Number of bits read from each node: t

Total repair bandwidth: γ = m · t.

Vitaly Skachek Problems in DSS

Functional Repair

The number of information blocks: M

The number of information nodes: n

The total number of active nodes: N

Number of stored bits per node: α

Maximal number of nodes used in repair: m

Number of bits read from each node: t

Total repair bandwidth: γ = m · t.

Example

X1 Y1 X1 + Y1 X1 + Y2

X2 Y2 X2 + Y2 X2 + Y1

Here: N = 4, n = 2, M = 4, m = 2, t = 2 blocks, γ = 4 blocks.

Vitaly Skachek Problems in DSS

Fundamental Trade-off

[Dimakis, Godfrey, Wu, Wainwright, Ramchandran 2008]

Theorem

The following point is feasible:

α ≥

{

M
n

γ ∈ [f (0),+∞)
M−g(i)γ

n−i
γ ∈ [f (i), f (i − 1))

,

where

f (i) ,
2Mm

(2n − i − 1)i + 2n(m − n + 1)

g(i) ,
(2m − 2n + i + 1)i

2m
,

and m < N − 1.

Vitaly Skachek Problems in DSS

Special Cases

MSR: Minimum storage regenerating codes.

MBR: Minimum bandwidth regenerating codes.

Vitaly Skachek Problems in DSS

Special Cases

MSR: Minimum storage regenerating codes.

MBR: Minimum bandwidth regenerating codes.

MSR codes

(α, γ) =

(

M

n
,
M

n
·
N − 1

N − n

)

.

Vitaly Skachek Problems in DSS

Special Cases

MSR: Minimum storage regenerating codes.

MBR: Minimum bandwidth regenerating codes.

MSR codes

(α, γ) =

(

M

n
,
M

n
·
N − 1

N − n

)

.

MBR codes

(α, γ) =

(

M

n
·

2N − 2

2N − n − 1
,
M

n
·

2N − 2

2N − n − 1

)

.

Vitaly Skachek Problems in DSS

Code Locality

[Gopalan, Huang, Simitci, Yekhanin 2012]

Vitaly Skachek Problems in DSS

Code Locality

[Gopalan, Huang, Simitci, Yekhanin 2012]

Definition

Let [n, k , d]q be a linear code C over Fq. We say that the C has
locality r , if the value of any symbol in C can be recovered by
accessing some r other coordinates of C.

Vitaly Skachek Problems in DSS

Code Locality

[Gopalan, Huang, Simitci, Yekhanin 2012]

Definition

Let [n, k , d]q be a linear code C over Fq. We say that the C has
locality r , if the value of any symbol in C can be recovered by
accessing some r other coordinates of C.

Bound

The following connection holds:

n − k ≥
⌈k

r

⌉

+ d − 2 .

The Pyramid codes are shown to achieve this bound.

Vitaly Skachek Problems in DSS

Code Availability

[Rawat, Papailiopoulos, Dimakis, Vishwanath 2014]

Vitaly Skachek Problems in DSS

Code Availability

[Rawat, Papailiopoulos, Dimakis, Vishwanath 2014]

Definition

Let [n, k , d]q be a linear code C over Fq. We say that the C has
(r , s)-availability, if the value of any symbol in C can be recovered
by accessing s disjoint groups of other symbols, each of size at
most r .

Vitaly Skachek Problems in DSS

Code Availability

[Rawat, Papailiopoulos, Dimakis, Vishwanath 2014]

Definition

Let [n, k , d]q be a linear code C over Fq. We say that the C has
(r , s)-availability, if the value of any symbol in C can be recovered
by accessing s disjoint groups of other symbols, each of size at
most r .

Bound

The following connection holds:

n − k ≥
⌈ks

r

⌉

+ d − s − 2 .

There are explicit constructions of codes that achieve this bound
for a variety of parameters.

Vitaly Skachek Problems in DSS

Batch Codes

Proposed in [Ishai, Kushilevitz, Ostrovsky, Sahai 2004].

Can be used in:

Load balancing.
Private information retrieval.
Distributed storage systems.

Vitaly Skachek Problems in DSS

Batch Codes

Proposed in [Ishai, Kushilevitz, Ostrovsky, Sahai 2004].

Can be used in:

Load balancing.
Private information retrieval.
Distributed storage systems.

Constructions:

[Ishai et al. 2004]: algebraic, expander graphs, subsets, RM
codes, locally-decodable codes

Vitaly Skachek Problems in DSS

Prior Art

Design-based constructions and bounds:

[Stinson, Wei, Paterson 2009]

[Brualdi, Kiernan, Meyer, Schroeder 2010]

[Bujtas, Tuza 2011]

[Bhattacharya, Ruj, Roy 2012]

[Silberstein, Gal 2013]

Vitaly Skachek Problems in DSS

Prior Art

Design-based constructions and bounds:

[Stinson, Wei, Paterson 2009]

[Brualdi, Kiernan, Meyer, Schroeder 2010]

[Bujtas, Tuza 2011]

[Bhattacharya, Ruj, Roy 2012]

[Silberstein, Gal 2013]

Application to distributed storage:

[Rawat, Papailiopoulos, Dimakis, Vishwanath 2014]

[Silberstein 2014]

Vitaly Skachek Problems in DSS

Batch Codes

Definition [Ishai et al. 2004]

C is an (n,N,m,M, t)Σ batch code over Σ if it encodes any string
x = (x1, x2, · · · , xn) ∈ Σn into M strings (buckets) of total length
N over Σ, namely y1, y2, · · · , yM , such that for each m-tuple
(batch) of (not neccessarily distinct) indices i1, i2, · · · , im ∈ [n], the
symbols xi1 , xi2 , · · · , xim can be retrieved by m users, respectively,
by reading ≤ t symbols from each bucket, such that xiℓ is
recovered from the symbols read by the ℓ-th user alone.

Vitaly Skachek Problems in DSS

Batch Codes

Definition [Ishai et al. 2004]

C is an (n,N,m,M, t)Σ batch code over Σ if it encodes any string
x = (x1, x2, · · · , xn) ∈ Σn into M strings (buckets) of total length
N over Σ, namely y1, y2, · · · , yM , such that for each m-tuple
(batch) of (not neccessarily distinct) indices i1, i2, · · · , im ∈ [n], the
symbols xi1 , xi2 , · · · , xim can be retrieved by m users, respectively,
by reading ≤ t symbols from each bucket, such that xiℓ is
recovered from the symbols read by the ℓ-th user alone.

Definition

If t = 1, then we use notation (n,N,m,M)Σ for it. Only one
symbol is read from each bucket.

Vitaly Skachek Problems in DSS

Batch Codes (cont.)

Definition

An (n,N,m,M, t)q batch code is linear, if every symbol in every
bucket is a linear combination of original symbols.

Vitaly Skachek Problems in DSS

Batch Codes (cont.)

Definition

An (n,N,m,M, t)q batch code is linear, if every symbol in every
bucket is a linear combination of original symbols.

In what follows, consider linear codes with t = 1 and N = M: each
encoded bucket contains just one symbol in Fq.

Vitaly Skachek Problems in DSS

Linear Batch Codes: Our Settings

For simplicity we refer to a linear (n,N = M,m,M)q batch code as
[M, n,m]q batch code.

Vitaly Skachek Problems in DSS

Linear Batch Codes: Our Settings

For simplicity we refer to a linear (n,N = M,m,M)q batch code as
[M, n,m]q batch code.

Let x = (x1, x2, · · · , xn) be an information string.

Let y = (y1, y2, · · · , yM) be an encoding of x.

Each encoded symbol yi , i ∈ [M], is written as
yi =

∑n
j=1 gj ,ixj .

Form the matrix G:

G =
(

gj ,i

)

j∈[n],i∈[M]
;

the encoding is y = xG.

Vitaly Skachek Problems in DSS

Code Comparison

Locally repairable codes, codes with locality.

0 0001 1 1 1?

Vitaly Skachek Problems in DSS

Code Comparison

Locally repairable codes, codes with locality.

0 0001 1 1 1?

Vitaly Skachek Problems in DSS

Code Comparison

Codes with locality and availability.

0 0001 1 1 1

y y
4 4

0

y
4

0

Vitaly Skachek Problems in DSS

Code Comparison

Batch codes.

0 0001 1 1 1

x x x
2 2 3

0

Vitaly Skachek Problems in DSS

Retrieval

Theorem

Let C be an [M, n,m]q batch code. It is possible to retrieve
xi1 , xi2 , · · · , xim simultaneously if and only if there exist m
non-intersecting sets T1,T2, · · · ,Tm of indices of columns in G,
and for Tr there exists a linear combination of columns of G
indexed by that set, which equals to the column vector eTir , for all
r ∈ [m].

Vitaly Skachek Problems in DSS

Retrieval

Theorem

Let C be an [M, n,m]q batch code. It is possible to retrieve
xi1 , xi2 , · · · , xim simultaneously if and only if there exist m
non-intersecting sets T1,T2, · · · ,Tm of indices of columns in G,
and for Tr there exists a linear combination of columns of G
indexed by that set, which equals to the column vector eTir , for all
r ∈ [m].

Example

[Ishai et al. 2004] Consider the following linear binary batch code C
whose 4× 9 generator matrix is given by

G =









1 0 1 0 0 0 1 0 1
0 1 1 0 0 0 0 1 1
0 0 0 1 0 1 1 0 1
0 0 0 0 1 1 0 1 1









.

Vitaly Skachek Problems in DSS

Retrieval (cont.)

Example

Let x = (x1, x2, x3, x4), y = xG.
Assume that we want to retrieve the values of (x1, x1, x2, x2). We
can retrieve (x1, x1, x2, x2) from the following set of equations:















x1 = y1
x1 = y2 + y3
x2 = y5 + y8
x2 = y4 + y6 + y7 + y9

.

It is straightforward to verify that any 4-tuple (xi1 , xi2 , xi3 , xi4),
where i1, i2, i3, i4 ∈ [4], can be retrieved by using columns indexed
by some four non-intersecting sets of indices in [9]. Therefore, the
code C is a [9, 4, 4]2 batch code.

Vitaly Skachek Problems in DSS

Properties of Linear Batch Codes

Theorem

Let C be an [M, n,m]2 batch code C over F2. Then, G is a

generator matrix of the classical error-correcting [M, n,≥ m]2
code.

Vitaly Skachek Problems in DSS

Properties of Linear Batch Codes

Theorem

Let C be an [M, n,m]2 batch code C over F2. Then, G is a

generator matrix of the classical error-correcting [M, n,≥ m]2
code.

Example

The converse is not true. For example, take G to be a generator
matrix of the classical [4, 3, 2]2 ECC as follows:

G =





1 1 1 1
0 1 0 1
0 0 1 1



 .

Let x = (x1, x2, x3). Then, it is impossible to retrieve (x2, x3).

Vitaly Skachek Problems in DSS

Bounds on the Parameters

Various well-studied properties of linear ECCs, such as
MacWilliams identities, apply also to linear batch codes (for
t = 1, M = N and q = 2).

Vitaly Skachek Problems in DSS

Bounds on the Parameters

Various well-studied properties of linear ECCs, such as
MacWilliams identities, apply also to linear batch codes (for
t = 1, M = N and q = 2).

A variety of bounds on the parameters of ECCs, such as
sphere-packing bound, Plotkin bound, Griesmer bound,
Elias-Bassalygo bound, McEliece-Rodemich-Rumsey-Welch
bound apply to the parameters of [M, n,m]2 batch codes.

Vitaly Skachek Problems in DSS

File Synchronization Problem

Before synchronization:

User A: f1, f2, f3 and f4.
User B: f1, f3, f4.
User C : f2, f3.

Vitaly Skachek Problems in DSS

File Synchronization Problem

Before synchronization:

User A: f1, f2, f3 and f4.
User B: f1, f3, f4.
User C : f2, f3.

After synchronization:

Users A,B ,C : f1, f2, f3 and f4.

Vitaly Skachek Problems in DSS

Prior Art

Mitzenmacher and Varghese ’2012

Vitaly Skachek Problems in DSS

Prior Art

Mitzenmacher and Varghese ’2012

Parameters to Consider

Communication cost Communication(A): the worst case
number of bits sent between the devices;

Computational complexity Computation(A): the worst case
number of operations performed at each device;

Time Time(A): the length of the largest chain of messages in
the communication protocol.

Vitaly Skachek Problems in DSS

Prior Art

Mitzenmacher and Varghese ’2012

Parameters to Consider

Communication cost Communication(A): the worst case
number of bits sent between the devices;

Computational complexity Computation(A): the worst case
number of operations performed at each device;

Time Time(A): the length of the largest chain of messages in
the communication protocol.

k is the total number of objects in possession of A and B ;

d is the number of objects possessed by only one user;

u is the size of the space where the objects are taken from.

Vitaly Skachek Problems in DSS

Prior Art

Minsky, Trachtenberg and Zippel ’2003: characteristic
polynomials.
Communication(A) = O(d log u),
Computation(A) = O(d3),
Time(A) = O(log k)

Vitaly Skachek Problems in DSS

Prior Art

Minsky, Trachtenberg and Zippel ’2003: characteristic
polynomials.
Communication(A) = O(d log u),
Computation(A) = O(d3),
Time(A) = O(log k)

Goodrich and Mitzenmacher ’2011: invertible Bloom filters.
Communication(A) = O(d log u),
Computation(A) = O(d),
Time(A) = 3

Vitaly Skachek Problems in DSS

Prior Art

Minsky, Trachtenberg and Zippel ’2003: characteristic
polynomials.
Communication(A) = O(d log u),
Computation(A) = O(d3),
Time(A) = O(log k)

Goodrich and Mitzenmacher ’2011: invertible Bloom filters.
Communication(A) = O(d log u),
Computation(A) = O(d),
Time(A) = 3

Mitzenmacher and Varghese ’2012: Biff codes.
Communication(A) = O(d log u),
Computation(A) = O(k log u),
Time(A) = 3.

Vitaly Skachek Problems in DSS

Prior Art

Minsky, Trachtenberg and Zippel ’2003: characteristic
polynomials.
Communication(A) = O(d log u),
Computation(A) = O(d3),
Time(A) = O(log k)

Goodrich and Mitzenmacher ’2011: invertible Bloom filters.
Communication(A) = O(d log u),
Computation(A) = O(d),
Time(A) = 3

Mitzenmacher and Varghese ’2012: Biff codes.
Communication(A) = O(d log u),
Computation(A) = O(k log u),
Time(A) = 3.

with high probability.

Vitaly Skachek Problems in DSS

Subspace Synchronization for Two Users

Finite field F with q elements.

Two users w and v .

The users own vector spaces U ⊆ F
n and V ⊆ F

n,
respectively.

Goal: w and v own vector space U + V .

Vitaly Skachek Problems in DSS

Subspace Synchronization for Two Users

Finite field F with q elements.

Two users w and v .

The users own vector spaces U ⊆ F
n and V ⊆ F

n,
respectively.

Goal: w and v own vector space U + V .

Algorithm A

(1) The user w draws a nonzero vector x ∈ U randomly and
uniformly and communicates it to v .

(2) The node v checks if x ∈ V . If not, performs

V ← V ⊕ 〈x〉 .

(3) Repeat (1)-(2) for Θ(d) rounds.

(4) Switch the roles of w and v .

Vitaly Skachek Problems in DSS

Subspace Synchronization for Two Users (cont.)

With high probability,
Communication(A) = O(d · n log q),
Computation(A) = O(k2 · n),
Time(A) = 2.

Vitaly Skachek Problems in DSS

Subspace Synchronization for Two Users (cont.)

With high probability,
Communication(A) = O(d · n log q),
Computation(A) = O(k2 · n),
Time(A) = 2.

The scheme is easily extendable extendable to networks with many
users.

Vitaly Skachek Problems in DSS

Using Reed-Solomon Codes

Consider a classical [n, k, d]-linear code C over the finite field
F = Fq, such that n ≥ 2m for some integer m > 0. (For example,
RS code with n + 1 = k + d). Let the (n− k)× n parity-check
matrix of C be

H = [h1 | h2 | · · · | hn] ,

hi ’s are the columns of H.

Vitaly Skachek Problems in DSS

Using Reed-Solomon Codes

Consider a classical [n, k, d]-linear code C over the finite field
F = Fq, such that n ≥ 2m for some integer m > 0. (For example,
RS code with n + 1 = k + d). Let the (n− k)× n parity-check
matrix of C be

H = [h1 | h2 | · · · | hn] ,

hi ’s are the columns of H.

With every vector x ∈ {0, 1}m associate a unique integer index
φ(x) ∈ [n]. If x1 6= x2, we have φ(x1) 6= φ(x2). Assume that
O = {xi}i∈S is a collection of objects for some S ⊆ [n].

Vitaly Skachek Problems in DSS

Using Reed-Solomon Codes

Consider a classical [n, k, d]-linear code C over the finite field
F = Fq, such that n ≥ 2m for some integer m > 0. (For example,
RS code with n + 1 = k + d). Let the (n− k)× n parity-check
matrix of C be

H = [h1 | h2 | · · · | hn] ,

hi ’s are the columns of H.

With every vector x ∈ {0, 1}m associate a unique integer index
φ(x) ∈ [n]. If x1 6= x2, we have φ(x1) 6= φ(x2). Assume that
O = {xi}i∈S is a collection of objects for some S ⊆ [n].

Represent the collection O by the vector space

Φ(O) ,
〈

hφ(x)
〉

x∈O .

Vitaly Skachek Problems in DSS

Using Reed-Solomon Codes and Subspaces

In order to perform reconciliation of two sets of objects, O1 and
O2, the corresponding vector spaces V1 and V2 are constructed,
such that Vi = Φ(Oi) for i = 1, 2. Then the synchronization
algorithm A is applied to V1 and V2.

Vitaly Skachek Problems in DSS

Using Reed-Solomon Codes and Subspaces

In order to perform reconciliation of two sets of objects, O1 and
O2, the corresponding vector spaces V1 and V2 are constructed,
such that Vi = Φ(Oi) for i = 1, 2. Then the synchronization
algorithm A is applied to V1 and V2.

Performance

Communication(A) = O(d2m) = O(d2 log u),
Computation(A) = O(d2 · u).
Time(A) = 2

Vitaly Skachek Problems in DSS

Network Coding with Hashing Approach

Denote by OA = {xi ∈ F
n}i∈XA

and OB = {xi ∈ F
n}i∈XB

the
set of objects, which are unique to A and to B , respectively.

OC = {xi ∈ F
n}i∈XO

the set of objects which are possessed by
both A and B .

Let s = |XA| and τ = |XA ∪ XO |.

As before, let d = |XA ∪ XB | be the number of different files
for A and B .

Assume that s, or a tight upper bound on it, is known to both
A and B .

Vitaly Skachek Problems in DSS

User A

User A creates s arbitrary linear combinations of the form

yj =
∑

i∈XA∪XO

αj ,ixi , j ∈ [s] ,

The protocol uses a hash function H : F
n → K, where K is

the finite set of possible keys.

User A applies H to xi for all i ∈ XA ∪ XO to produce hash
values H(xi) for all i .

These values are transmitted to B .

Vitaly Skachek Problems in DSS

User A

User A creates s arbitrary linear combinations of the form

yj =
∑

i∈XA∪XO

αj ,ixi , j ∈ [s] ,

The protocol uses a hash function H : F
n → K, where K is

the finite set of possible keys.

User A applies H to xi for all i ∈ XA ∪ XO to produce hash
values H(xi) for all i .

These values are transmitted to B .

A transmits to B the following data:

the header h, which contains the sorted list of values H(xi),
i ∈ XA ∪ XO ;

for all j ∈ [s], the vector pairs (αj , yj).

Vitaly Skachek Problems in DSS

User A (cont.)

Let X be a τ × n matrix over F, whose rows are all vectors xi
indexed by [τ]. Similarly, let Y be a s × n matrix, whose rows are
vectors yi for all i ∈ [s]. Denote

A =











α1,1 α1,2 · · · α1,τ

α2,1 α2,2 · · · α2,τ
...

...
. . .

...
αs,1 αs,2 · · · αs,τ











.

The transmitted vector pairs can be viewed as the rows of the
matrix

A · [Iτ | X] = [A | Y] ,

where

X =











x1
x2
...
xτ











and Y = AX =











y1
y2
...
ys











.

Vitaly Skachek Problems in DSS

User B

1 Compute values of the function H applied to the vectors in its
possession. By comparing these values to the values in the
header h, it finds the indices corresponding to elements in XO .

2 For each j ∈ [s], subtract vectors
∑

i∈XO
αj ,ixi from yj .

Compute the resulting matrix with s rows:

[

Ã | Ỹ
]

,

where rows of Ỹ are the vectors

ỹj = yj −
∑

i∈XO

αj ,ixi ,

and Ã is an invertible s × s matrix obtained from A by
removing the columns corresponding to the vectors indexed by
XO .

Vitaly Skachek Problems in DSS

User B (cont.)

Compute the matrix

[

I | Ã
−1

Ỹ
]

=
[

I | X̃
]

,

where, if there are no hashing collisions, X̃ is exactly the matrix X

having rows corresponding to the vectors indexed by XA.

Vitaly Skachek Problems in DSS

User B (cont.)

Compute the matrix

[

I | Ã
−1

Ỹ
]

=
[

I | X̃
]

,

where, if there are no hashing collisions, X̃ is exactly the matrix X

having rows corresponding to the vectors indexed by XA.

Peformance

Communication(A) = O(d · n log q)
Computation(A) = O(k2 · n)
If s is known, then Time(A) = 2. If s is not known, then
Time(A) = 3.

Vitaly Skachek Problems in DSS

Using a Pool of Hash Functions

Large pool of different hash functions (known to both users).

In each round, the hash function is selected randomly from
the pool.

User A sends to B the ID number of the selected hash
function.

Vitaly Skachek Problems in DSS

Using a Pool of Hash Functions

Large pool of different hash functions (known to both users).

In each round, the hash function is selected randomly from
the pool.

User A sends to B the ID number of the selected hash
function.

Assume a collection S of k different files in {0, 1}n. Let H be a set
of all functions H : {0, 1}n → K, where K is the set of all possible
keys. Assume that k ≪ |K| ≪ 2n.

Vitaly Skachek Problems in DSS

Using a Pool of Hash Functions

Large pool of different hash functions (known to both users).

In each round, the hash function is selected randomly from
the pool.

User A sends to B the ID number of the selected hash
function.

Assume a collection S of k different files in {0, 1}n. Let H be a set
of all functions H : {0, 1}n → K, where K is the set of all possible
keys. Assume that k ≪ |K| ≪ 2n.

Theorem

If K is selected such that |K| > c · (k − 1)2 for some large constant
c > 0, then the probability of success is at least e−1/c .

Vitaly Skachek Problems in DSS

Thank you!

Questions?

Vitaly Skachek Problems in DSS

