Short pp-definitions for algebras with few subpowers

Michael Kompatscher¹ Charles University

A finite algebra \mathbf{A} has few subpowers, if the number of invariant relations $R \leq \mathbf{A}^n$ is bounded by $2^{p(n)}$, for some polynomial p. Aichinger, Mayr and McKenzie proved in 2014 that every algebra \mathbf{A} with few subpowers is finitely related, i.e. there is a finite set of relations $\Sigma = \{R_1, \ldots, R_k\}$, such that all invariant relation have a pp-definition in Σ . Let us say that \mathbf{A} has short pp-definitions if, additionally, $R \leq \mathbf{A}^n$ can be defined by such a pp-formula of length at most q(n), for some polynomial q. In this talk, I would like to motivate this notion as a natural witness for the non-membership in subpowers (dual to compact representations), and present a new result, stating that all algebras with few subpowers that generate residually finite varieties have short pp-definitions.

¹Joint work with Jakub Bulín, Charles University.