On the semigroup of 2×2 matrices over a linearly ordered abelian group

Valdis Laan ${ }^{1}$
University of Tartu

Our research is motivated by the article [1] by Johnson and Kambites. In that article, so-called tropical matrices are considered. These are matrices over $\mathbb{R} \cup\{-\infty\}$.

We consider 2×2 matrices over a linearly ordered abelian group \mathbf{A}. The set of all such matrices forms a semigroup with respect to multiplication

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot\left(\begin{array}{ll}
e & f \\
g & h
\end{array}\right)=\left(\begin{array}{ll}
(a+e) \vee(b+g) & (a+f) \vee(b+h) \\
(c+e) \vee(d+g) & (c+f) \vee(d+h)
\end{array}\right) .
$$

We discuss the properties of this semigroup. In particular, we concentrate on the Green's relations $\mathcal{R}, \mathcal{L}, \mathcal{H}, \mathcal{D}$ and \mathcal{J} in this semigroup. Among other things we give a necessary and sufficient condition for two matrices to be in \mathcal{D}-relation and we prove that $\mathcal{D}=\mathcal{J}$.

References

[1] M. Johnson, M. Kambites, Multiplicative structure of 2×2 tropical matrices, Linear Algebra Appl. 435, 2011, 1612-1625.

[^0]
[^0]: ${ }^{1}$ Joint work with Marilyn Kutti

