The least left *n*-trinilpotent dimonoid congruence on the free trioid

Anatolii Zhuchok

Luhansk Taras Shevchenko National University, Poltava, Ukraine

Trioids and free monogenic trioids first appeared in [1]. A *trioid* is a nonempty set T equipped with three binary associative operations \dashv , \vdash , and \perp satisfying the following axioms:

$$(x \dashv y) \dashv z = x \dashv (y \vdash z), \quad (x \vdash y) \dashv z = x \vdash (y \dashv z),$$

$$(x \dashv y) \vdash z = x \vdash (y \vdash z), \quad (x \dashv y) \dashv z = x \dashv (y \perp z),$$

$$(x \perp y) \dashv z = x \perp (y \dashv z), \quad (x \dashv y) \perp z = x \perp (y \vdash z),$$

$$(x \vdash y) \perp z = x \vdash (y \perp z), \quad (x \perp y) \vdash z = x \vdash (y \vdash z)$$

for all $x, y, z \in T$. Recall the construction of the free trioid of an arbitrary rank.

As usual, \mathbb{N} denotes the set of all positive integers. Let X be an arbitrary nonempty set, and let F[X] be the free semigroup on X. For every word ω over X the length of ω is denoted by ℓ_{ω} . For any $n, k \in \mathbb{N}$ and $L \subseteq \{1, 2, \ldots, n\}, L \neq \emptyset$, we let $L + k = \{m + k \mid m \in L\}$. Define operations \exists, \vdash , and \bot on the set

$$F = \{(w, L) \mid w \in F[X], L \subseteq \{1, 2, \dots, \ell_w\}, L \neq \emptyset\}$$

by

$$(w, L) \dashv (u, R) = (wu, L), \quad (w, L) \vdash (u, R) = (wu, R + \ell_w),$$

 $(w, L) \perp (u, R) = (wu, L \cup (R + \ell_w))$

for all $(w, L), (u, R) \in F$. According to [3], $(F, \dashv, \vdash, \bot)$ is the free trioid.

If ρ is a congruence on a trioid $(T, \dashv, \vdash, \bot)$ such that $(T, \dashv, \vdash, \bot)/\rho$ is a left (right) *n*-trinilpotent trioid, we say that ρ is a *left (right) n-trinilpotent congruence* [4]. If ρ is a congruence on a trioid $(T, \dashv, \vdash, \bot)$ such that two operations of $(T, \dashv, \vdash, \bot)/\rho$ coincide and $(T, \dashv, \vdash, \bot)/\rho$ is a dimonoid, we say that ρ is a *dimonoid congruence* [2]. A dimonoid congruence ρ on a trioid $(T, \dashv, \vdash, \bot)$ is called a d_{\dashv}^{\perp} -congruence [2] if the operations \dashv and \bot of $(T, \dashv, \vdash, \bot)/\rho$ coincide. If ρ is a congruence on a trioid $(T, \dashv, \vdash, \bot)$ such that the operations of $(T, \dashv, \vdash, \bot)/\rho$ coincide and $(T, \dashv, \vdash, \bot)/\rho$ is a left (right) *n*-nilpotent semigroup, we say that ρ is a *left (right) n-nilpotent semigroup congruence*.

We characterize the least left (right) *n*-trinilpotent d_{\dashv}^{\perp} -congruence and the least left (right) *n*-nilpotent semigroup congruence on the free trioid.

The author was supported by a Philipp Schwartz Fellowship of the Alexander von Humboldt Foundation.

References

- J.-L. Loday, M.O. Ronco, Trialgebras and families of polytopes, Contemp. Math. 346, 2004, 369–398.
- [2] A.V. Zhuchok, Free commutative trioids, Semigroup Forum 98, 2019, no. 2, 355–368.
- [3] A.V. Zhuchok, Trioids, Asian-Eur. J. Math. 8, 2015, no. 4.
- [4] A.V. Zhuchok, Y.A. Kryklia, The least left *n*-trinilpotent congruence on the free trioid, *Algebra Universalis* 83, 2022, no. 4.