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Abstract. In this paper we describe injectives in the category of S-posets
with S-submultiplicative morphisms and construct injective hulls of S-posets

with respect to a specific class E6 of monomorphisms.

1. Introduction

Injectivity is among properties that were studied in the very first articles which
appeared in the area of S-posets ([12] and [5]). It is also a topic of several recent
papers on S-posets (see, e.g., [3] and [13]). From those articles it turns out that
a regularly injective S-poset has to be complete in such a way that suprema are
compatible with S-action. One of the aims of this paper is to show that in a suitable
framework injectivity is equivalent to that kind of completeness. The second goal is
to show how to construct injective hulls of S-posets with respect to a certain class
of monomorphisms.

In this work, S is always a pomonoid, that is, a monoid S equipped with a partial
order 6 such that ss′ 6 tt′ whenever s 6 t, s′ 6 t′ in S. A poset (A, 6) together
with a mapping A × S → A (under which a pair (a, s) maps to an element of A
denoted by as) is called a right S-poset, denoted by AS , if for any a, b ∈ A, s, t ∈ S,

(1) a(st) = (as)t,
(2) a1 = a,
(3) a 6 b, s 6 t imply that as 6 bt.

A left S-poset can be defined similarly. Right S-poset homomorphisms are order-
preserving mappings which also preserve the S-action. We denote the category of
right S-posets with S-poset homomorphisms as morphisms by PosS . An S-subposet
of an S-poset AS is an action-closed subset of A whose partial order is the restriction
of the order of A.

Let C be a category and let M be a class of morphisms in C. We recall that an
object Q from C is M-injective in C provided that for any morphism h : A → B
in M and any morphism f : A → Q in C there exists a morphism g : B → Q in C
such that gh = f.
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A morphism η : A→ B inM is calledM-essential if every morphism ψ : B → C
in C, for which the composite ψη is inM, is itself inM. An object H ∈ C is called
an M-injective hull of an object A ∈ C if H is M-injective and there exists an
M-essential morphism A→ H (see [1], Def. 9.22).

Let AS and BS be S-posets. We say that a mapping f : A → B is S-

submultiplicative if f(a)s 6 f(as) for any a ∈ A, s ∈ S. We denote by Pos6S the
category where objects are right S-posets and morphisms are S-submultiplicative
order-preserving mappings. Clearly every S-poset homomorphism is an S-submulti-

plicative order-preserving mapping, so PosS is a subcategory of Pos6S which is not
necessarily full.

Example 1. Consider the pomonoid S = ({0, 1}, ·,6) where 0 < 1. Then the
constant mapping

f : SS → SS , 1 7→ 1, 0 7→ 1

is order-preserving and S-submultiplicative, but it is not a right S-act homomor-
phism, because f(1) · 0 = 0 6= 1 = f(1 · 0).

An order embedding from a poset (A,6A) to a poset (B,6B) is a mapping
h : A → B such that a 6A a′ iff h(a) 6B h(a′), for all a, a′ ∈ A. Every order
embedding is necessarily an injective mapping. We will denote by E the class of all
right S-poset homomorphisms that are order-embeddings. These are precisely the
regular monomorphisms in PosS (see [2], Theorem 7).

In this paper we will study injectivity with respect to a specific class of order-

embeddings. Let E6 be the class of morphisms e : AS → BS in the category Pos6S
which satisfy the following condition: e(a)s 6 e(a′) implies as 6 a′ for all a, a′ ∈ A
and s ∈ S. Evidently, each morphism in E6 is an order-embedding. On the other
hand, every S-poset homomorphism that is an order embedding belongs to E6. In
other words, E ⊆ E6.

Lemma 2. Let S be a pogroup. Then Pos6S = PosS and E6 = E.

Proof. We need to show that every order-preserving S-submultiplicative mapping
f : AS → BS is a right S-poset homomorphism. For every a ∈ A and s ∈ S we
have f(a)s 6 f(as) and f(as)s−1 6 f(ass−1) = f(a) by S-submultiplicativity.
Multiplying both sides of the last inequality by s we obtain f(as) 6 f(a)s. We
conclude that f(as) = f(a)s, as required.

For the second claim we have to prove the inclusion E6 ⊆ E . If e ∈ E6 then
clearly e is an order-embedding. By the first part of this proof, e also preserves
S-action. �

Inspired by the notion of a quantale (see [8]) we introduce a term “S-quantale”.

Definition 3. We call a right S-poset AS a right S-quantale if

(1) the poset A is a complete lattice;
(2) (

∨
M)s =

∨
{ms | m ∈M} for each subset M of A and each s ∈ S.

In the following, “S-quantale” is also used to substitute the term “right S-
quantale”.

We note that S-quantales also appear in [5] under the name of “complete S-
posets”, in [4] under the name of “continuously complete S-posets” and in [10]
under the name of “equivariantly complete S-posets”.
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Injectivity properties of S-posets have been studied by several authors. First of
all, injectivity with respect to all monomorphisms (i.e., injective homomorphisms)
is not an interesting property, because the only S-posets with this property are
singletons ([3], Theorem 2.5). Therefore it is more natural to study E-injectivity.
Since the morphisms in E are precisely the regular monomorphisms of PosS , E-
injective S-posets have been called also regularly injective (cf. [13]).

The first to study regular injectivity was Skornyakov ([12]) who studied S-posets
over a discretely ordered monoid S and proved that such S-posets are complete
as posets if they are regularly injective. Later on, Fakhruddin generalized this
result to arbitrary pomonoids. He showed that (using our terminology), a regularly
injective left S-poset over a pomonoid S is necessarily a left S-quantale (see [5],
Proposition 7.2). Recently, Ebrahimi, Mahmoudi and Rasouli showed in their paper
[3] that for a pomonoid S, an S-poset is regularly injective if and only if it is a retract
of a cofree S-poset over a complete poset. However, it seems that there exist no
descriptions of regularly injective S-posets AS in terms that are internal to AS .
There are some special results. For example, Fakhruddin in [5] found that for a
pogroup S, a left S-poset is regularly injective if and only if it is a left S-quantale,
thereby generalizing a similar result of Skornyakov.

One approach to obtain necessary and sufficient conditions for injectivity is to
allow a larger class of morphisms between S-posets. This is inspired by the most
recent work [7], and also [14], in which certain injective hulls of posemigroups were
constructed in a category where morphisms are submultiplicative order-preserving

mappings. In this work, we will first investigate E6-injectives in the category Pos6S
(which has the same objects but possibly more morphisms than PosS) and then

give an explicit construction of E6-injective hulls of S-posets in Pos6S .

2. E6-injective S-posets

In this section we show that E6-injective objects in the category Pos6S are pre-
cisely the right S-quantales.

Proposition 4. Let QS be an S-quantale. Then QS is E6-injective in the category

Pos6S .

Proof. Let QS be an S-quantale, e : AS → BS be a morphism in E6 and let

f : AS → QS be a morphism in Pos6S . Define a mapping g : BS → QS by

g(b) =
∨
{f(a)z | e(a)z 6 b, a ∈ A, z ∈ S},

for any b ∈ B. Then g is obviously an order-preserving mapping. For any s ∈ S,
we have

g(b)s =
(∨
{f(a)z | e(a)z 6 b, a ∈ A, z ∈ S}

)
s

=
∨
{f(a)zs | e(a)z 6 b, a ∈ A, z ∈ S}

6
∨
{f(a)t | e(a)t 6 bs, a ∈ A, t ∈ S}

= g(bs),

which means that g is S-submultiplicative. (Note that here we used that e(a)z 6 b
implies e(a)zs 6 bs if a ∈ A, z ∈ S.) Finally, for any a ∈ A, we have

g(e(a)) =
∨
{f(x)z | e(x)z 6 e(a), x ∈ A, z ∈ S}.
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If x ∈ A, z ∈ S are such that e(x)z 6 e(a) then xz 6 a and hence

f(x)z 6 f(xz) 6 f(a).

Consequently, (ge)(a) 6 f(a). On the other hand, f(a) is obviously one of the terms
in the sup that defines (ge)(a). Therefore, ge = f as needed. �

Proposition 5. In the category Pos6S , every retract of an S-quantale is an S-
quantale.

Proof. Let ES be an S-quantale and let AS be a retract of ES . Then there exist
S-submultiplicative order-preserving mappings i : A→ E and g : E → A such that
gi = idA, where idA is the identity mapping on A. It is obvious that A is complete.

Let s ∈ S, M ⊆ A. Clearly, (
∨
M)s is an upper bound of {ms | m ∈ M}.

Suppose that u is an upper bound of {ms | m ∈M} in A. Then

u = g(i(u)) > g

(∨
E

{i(ms) | m ∈M}

)
> g

(∨
E

{i(m)s | m ∈M}

)

= g

((∨
E

{i(m) | m ∈M}

)
s

)
> g

(∨
E

{i(m) | m ∈M}

)
s >

(∨
A

M

)
s.

This means that (
∨
M)s is the least upper bound of {ms | m ∈M}, that is,(∨

M
)
s =

∨
{ms | m ∈M}.

�

A subset D of a poset A is said to be a down-set if x 6 d implies that x ∈ D for
any x ∈ A, d ∈ D. For any D ⊆ A, we denote by D↓ the down-set {x ∈ A | x 6 d
for some d ∈ D} and by a↓ the down-set {x ∈ A | x 6 a} for a ∈ A.

Now we wish to construct an E6-injective S-poset starting from an arbitrary
right S-poset.

Let AS be an S-poset, and let P(A) be the set of all down-sets of the poset A.
Define a right S-action · on P(A) by

D · s = (Ds)↓ = {x ∈ A | x 6 ds for some d ∈ D},
for any s ∈ S, D ∈P(A). It is routine to check that (P(A), ·) is an S-act, and an
S-poset if we consider inclusion as the partial order. Furthermore, (P(A), ·,⊆) is
a right S-quantale, that is, P(A) is a complete lattice under the inclusion relation
with supremum being union, and it satisfies(∨

{Mα | α ∈ Ω}
)
· s =

∨
{Mα · s | α ∈ Ω}

for any Mα ∈ P(A), α ∈ Ω, s ∈ S. We denote the right S-quantale (P(A), ·,⊆)
shortly by P(A)S . By Proposition 4, we have the following result.

Proposition 6. Let AS be an S-poset. Then P(A)S is E6-injective in the category

Pos6S .

Using the above construction, we obtain a description of E6-injectives in the

category Pos6S in the next theorem.

Theorem 7. Let AS be an S-poset. Then AS is E6-injective in Pos6S if and only
if AS is a right S-quantale.
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Proof. Necessity. The mapping η : AS → P(A)S given by η(a) = a↓ for each
a ∈ S is clearly an order embedding of the poset A into the poset P(A). It is
routine to check that η preserves S-action and hence η is also S-submultiplicative.
Moreover, if η(a) · s ⊆ η(a′) for a, a′ ∈ A, s ∈ S, then (as)↓ = a↓ · s ⊆ a′↓. This
implies that as 6 a′, which means that η ∈ E6.

Since AS is E6-injective by assumption, AS is a retract of the S-quantale P(A)S .
Consequently, AS is an S-quantale by Proposition 5.

Sufficiency follows by Proposition 4. �

Corollary 8 (Cf. [12] and [5]). For a right S-poset AS over a pogroup S the
following assertions are equivalent.

(1) AS is E-injective in PosS.

(2) AS is E6-injective in Pos6S .
(3) AS is a right S-quantale.

Proof. (1) ⇔ (2) by Lemma 2. (2) ⇔ (3) by Theorem 7. �

We say that a pomonoid S is right (left) E6-self-injective if the S-poset SS (SS)

is E6-injective in the category Pos6S (SPos
6). A pomonoid S is E6-self-injective if

it is both right and left E6-self-injective.
Self-injective (unordered) semigroups have been studied by several authors (see

the comments in [6]). In particular, Päeva [9] has given necessary and sufficient
conditions for right self-injectivity of a semigroup in terms of certain homomor-
phisms and right congruences. From Theorem 7 it immediately follows that E6-
self-injectivity of a pomonoid can be described in a quite simple way.

Corollary 9. A pomonoid S is E6-self-injective if and only if it is a quantale.

3. E6-injective hulls of S-posets

In a recent article [7], Lambek et al considered injective hulls in the category of
pomonoids and submultiplicative order-preserving mappings. Later on, Zhang and
Laan in [14] extended those results to certain posemigroups and submultiplicative
order-preserving mappings. Inspired by these results, in this section, we construct

E6-injective hulls in the category Pos6S . Similarly to Proposition 2.1 in [7] it can
be shown that E6-injective hulls are unique up to isomorphism.

Recall that an order-preserving mapping j on a poset P is called a closure oper-
ator if it satisfies

(1) a 6 j(a),
(2) j(j(a)) = j(a),

for all a ∈ P . Let us introduce the concept of S-quantic nucleus similarly to the
case of quantales (see [11]).

Definition 10. Let QS be an S-quantale. We say that an S-submultiplicative
closure operator j on Q is an S-quantic nucleus.

Lemma 11. Let j be an S-quantic nucleus on an S-quantale QS. Then j(as) =
j(j(a)s) for any a ∈ Q, s ∈ S.

Proof. On one hand, since j is increasing and order-preserving it follows that

a 6 j(a)⇒ as 6 j(a)s⇒ j(as) 6 j(j(a)s).

Conversely, j(a)s 6 j(as) implies j(j(a)s) 6 j(j(as)) = j(as). �
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Given a closure operator j on a complete lattice Q, its subset Qj = {a ∈ Q |
j(a) = a} is again complete. Moreover,

∨
{j(a) | a ∈ Q} = j(

∨
{a | a ∈ Q}) (see

[11]).

Theorem 12. If j : QS → QS is an S-quantic nucleus, then Qj is an S-quantale
with the action a ◦ s = j(as).

Proof. Since

(a ◦ s) ◦ t = j((a ◦ s)t) = j(j(as)t) = j((as)t) = j(a(st)) = a ◦ (st),

a ◦ 1 = j(a1) = j(a) = a

for all a ∈ Qj and s, t ∈ S, (Qj , ◦) is an S-act. Also, if a 6 b and s 6 t then as 6 bt
and a ◦ s = j(as) 6 j(bt) = b ◦ t, so (Qj , ◦) is an S-poset.

Let us show that (
∨
M) ◦ s =

∨
{m ◦ s | m ∈ M} for any M ⊆ Q, s ∈ S.

Obviously,
∨
{m ◦ s | m ∈M} ≤ (

∨
M) ◦ s. Conversely, we have(∨

M
)
◦ s = j

((∨
M
)
s
)

= j
(∨
{ms | m ∈M}

)
6 j

(∨
{j(ms) | m ∈M}

)
=
∨
{j(j(ms)) | m ∈M}

=
∨
{j(ms) | m ∈M} =

∨
{m ◦ s | m ∈M}.

So (Qj , ◦) is an S-quantale. �

In the next step, we will construct an E6-injective hull for any S-poset AS in

the category Pos6S .
For any down-set D of an S-poset AS we define its closure by

cl(D) := {x ∈ A | Ds ⊆ a↓ implies xs 6 a for all a ∈ A, s ∈ S}.

Lemma 13. For an S-poset AS, cl is an S-quantic nucleus on P(A)S.

Proof. It is straightforward to show that cl is a closure operator on P(A)S . Let
us prove that cl is S-submultiplicative, i.e., cl(D) · s ⊆ cl(D · s), for any D ∈
P(A)S , s ∈ S, Take y ∈ cl(D) · s. Then y 6 xs for some x ∈ cl(D). Suppose that
(D · s)t ⊆ a↓ where t ∈ S and a ∈ A. Then for any d ∈ D, dst ∈ (D · s)t ⊆ a↓.
Hence D(st) ⊆ a↓. So x(st) 6 a because x ∈ cl(D). It follows that yt 6 xst 6 a,
which results in y ∈ cl(D · s), as needed. �

For any S-poset AS , we put

Q(A) := P(A)cl = {D ∈P(A) | cl(D) = D}

and define a right S-action ◦ on Q(A) by

D ◦ s := cl(D · s),

for any s ∈ S. By Theorem 12, the S-poset Q(A)S = (Q(A), ◦,⊆) is an S-quantale,

and hence it is E6-injective in the category Pos6S .
Now we prove our main theorem.

Theorem 14. For every S-poset AS, Q(A)S is the E6-injective hull of AS in the

category Pos6S .
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Proof. Since S is a monoid, a↓ ∈ Q(A)S for any a ∈ A . We will show that the

mapping η : AS → Q(A)S , a 7→ a↓ is an E6-essential morphism in Pos6S .
To show that η is an S-poset homomorphism, take a ∈ A, s ∈ S. It is easy to

see that a↓ · s = (as)↓. Hence we have

η(a) ◦ s = cl(a↓ · s) = cl((as)↓) = (as)↓ = η(as),

i.e. η is an S-act homomorphism. For every a, b ∈ A, a 6 b if and only if a↓ ⊆ b↓,
which means that η is an order embedding. Thus η ∈ E ⊆ E6.

Finally, let ψ : Q(A)S → BS be a morphism in Pos6S such that ψη ∈ E6. We have
to show that ψ ∈ E6. Suppose that ψ(D)z 6 ψ(D′), where D,D′ ∈ Q(A), z ∈ S.
First we prove that

(3.1) (∀a ∈ A, s ∈ S)(D′s ⊆ a↓ =⇒ Dzs ⊆ a↓).
Assume that D′s ⊆ a↓, a ∈ A, s ∈ S, and take an element d ∈ D. Then D′ ◦ s =
cl((D′s)↓) ⊆ cl((a↓)↓) = cl(a↓) = a↓ and so

(ψη)(d)zs = ψ(d↓)zs 6 ψ(D)zs 6 ψ(D′)s 6 ψ(D′ ◦ s) 6 ψ(a↓) = (ψη)(a).

Since ψη ∈ E6, we conclude that dzs 6 a in A. Consequently, Dzs ⊆ a↓.
To complete the proof, we have to show that D ◦ z ⊆ D′. Take x ∈ D ◦ z. Since

D′ = cl(D′), it suffices to prove that x ∈ cl(D′), i.e.,

(∀a ∈ A, s ∈ S)(D′s ⊆ a↓ =⇒ xs 6 a).

If D′s ⊆ a↓ then, by (3.1), we have Dzs ⊆ a↓. Since x ∈ D ◦ z = cl((Dz)↓), we get
xs 6 a if we are able to prove that (Dz)↓s ⊆ a↓. If d ∈ D, d′ ∈ A and d′ 6 dz
then d′s 6 dzs 6 a, so (Dz)↓s ⊆ a↓, as needed. �

Example 15. Consider the additive pomonoid S = (N0,+) of nonnegative integers
acting on the set A = N by addition. For the S-poset AS we have

P(A) = {n↓ | n ∈ N} ∪ {∅,N} = Q(A),

where n↓ = {1, . . . , n}, and the action on Q(A) is defined by

n↓ ◦ s = cl((n↓+ s)↓) = cl((n+ s)↓) = (n+ s)↓,
N ◦ s = cl((N + s)↓) = cl(N) = N,
∅ ◦ s = cl((∅+ s)↓) = ∅,

s ∈ N. So Q(A)S is isomorphic to (N∪{θ,∞})N0 where∞+ s =∞, θ+ s = θ, and
θ 6 a 6∞ for all s ∈ N0 and a ∈ N. In other words, we obtain the injective hull of
AS by adjoining external zero elements, one at the top, the other at the bottom.
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