On descent theory for distributors

Valdis Laan and Pille Penjam

Abstract

We give necessary and sufficient conditions for equalizer preservation of the functor of tensor multiplication by a distributor and some sufficient conditions for a functor between small categories to be an effective descent functor.

1. Introduction

A functor $f: \mathcal{A} \rightarrow \mathcal{B}$ between small categories is called an effective descent functor if the so-called extension-of-scalars functor $f_{!}: \operatorname{Fun}\left(\mathcal{A}^{\text {op }}\right.$, Set $) \longrightarrow$ Fun ($\mathcal{B}^{\circ \mathrm{p}}$, Set $)$, induced by f, is comonadic. In this paper we give some sufficient conditions for f to be an effective descent functor. In Section 2 we give necessary and sufficient conditions for equalizer preservation for a more general situation than just for $f_{!}$. The results of Section 3 generalize the results of [6], where similar problems were considered for one-object categories (i.e. monoids) \mathcal{A} and \mathcal{B}.

Throughout this paper, \mathcal{A}, \mathcal{B} and \mathcal{C} will stand for small categories. By $\mathbf{1}$ we denote the discrete category with a single object $*$ and $\hat{\mathcal{A}}=\operatorname{Fun}\left(\mathcal{A}^{\text {op }}\right.$, Set $)$. A distributor (or a profunctor; see e.g. [4]) from \mathcal{A} to \mathcal{B} is a functor ϕ : $\mathcal{B}^{\mathrm{op}} \times \mathcal{A} \rightarrow$ Set. We write $\operatorname{Dist}(\mathcal{A}, \mathcal{B})=\operatorname{Fun}\left(\mathcal{B}^{\mathrm{op}} \times \mathcal{A}, \operatorname{Set}\right)$. By $(\hat{-}): \operatorname{Fun}\left(\mathcal{B}^{\mathrm{op}} \times\right.$ \mathcal{A}, Set $) \longrightarrow \operatorname{Fun}(\mathcal{A}, \hat{\mathcal{B}})$ and $(=): \operatorname{Fun}(\mathcal{A}, \hat{\mathcal{B}}) \longrightarrow \operatorname{Fun}\left(\mathcal{B}^{\text {op }} \times \mathcal{A}\right.$, Set $)$ we denote in the obvious way defined mutually inverse isomorphism functors.

Let $\phi: \mathcal{B}^{\mathrm{op}} \times \mathcal{A} \rightarrow$ Set be a distributor and $x \in \phi(B, A), B \in \mathcal{B}, A \in \mathcal{A}$. If $a: A \rightarrow A^{\prime}$ in \mathcal{A} then we write $a \cdot x:=\phi\left(1_{B}^{\mathrm{op}}, a\right)(x) \in \phi\left(B, A^{\prime}\right)$ and if $b: B^{\prime} \rightarrow B$ in \mathcal{B} then we write $x \cdot b:=\phi\left(b^{\mathrm{op}}, 1_{A}\right)(x) \in \phi\left(B^{\prime}, A\right)$.

Consider now distributors $\phi: \mathcal{B}^{\mathrm{op}} \times \mathcal{A} \rightarrow$ Set and $\psi: \mathcal{A}^{\mathrm{op}} \times \mathcal{C} \rightarrow$ Set, and the Yoneda functor $Y_{\mathcal{A}}: \mathcal{A} \rightarrow \hat{\mathcal{A}}$. Then $\hat{\phi}: \mathcal{A} \rightarrow \hat{\mathcal{B}}$ and there exists a left Kan extension $\mathrm{L}_{Y_{\mathcal{A}}}(\hat{\phi}): \hat{\mathcal{A}} \rightarrow \hat{\mathcal{B}}$ of $\hat{\phi}$ along $\mathrm{Y}_{\mathcal{A}}$ (this follows from the

[^0]existence of small colimits in Set), which is denoted just $\mathrm{L}_{\mathcal{A}}(\hat{\phi})$. Thus the composite or tensor product of ψ and ϕ can be defined as the distributor
\[

$$
\begin{aligned}
\psi \otimes \phi:= & \overline{\mathrm{L}_{\mathcal{A}}(\hat{\phi}) \circ \hat{\psi}}: \mathcal{B}^{\mathrm{op}} \times \mathcal{C} \rightarrow \text { Set. } \\
& \hat{\mathcal{A}} \xrightarrow[\mathrm{L}_{\mathcal{A}}(\hat{\phi}) \circ \hat{\psi}]{ }{ }_{\mathcal{C}} \mathrm{Y}_{\mathcal{A}} \\
& \hat{\mathcal{B}}
\end{aligned}
$$
\]

Note that for every $C \in \mathcal{C}, B \in \mathcal{B}$,

$$
(\psi \otimes \phi)(B, C)=\frac{\bigsqcup_{A \in \mathcal{A}} \psi(A, C) \times \phi(B, A)}{\sim}
$$

is the quotient set by the smallest equivalence relation \sim generated by all pairs $(x, y) \sim\left(x^{\prime}, y^{\prime}\right), x \in \psi(A, C), y \in \phi(B, A), x^{\prime} \in \psi\left(A^{\prime}, C\right), y^{\prime} \in \phi\left(B, A^{\prime}\right)$, such that

$$
x=x^{\prime} \cdot a \quad \text { and } \quad a \cdot y=y^{\prime}
$$

for some $a: A \rightarrow A^{\prime}$ in \mathcal{A}. The last equalities can be illustrated by the "commutative" diagram

where the dotted arrow labelled by y, for example, stands for the element y of $\phi(B, A)$. It is not difficult to see that $(x, y) \sim\left(x^{\prime}, y^{\prime}\right)$ if and only if there exists a "commutative" diagram

We denote the equivalence class of $(x, y) \in \psi(A, C) \times \phi(B, A)$ by $x \otimes_{A} y$, or just $x \otimes y$. So the basic rule for calculations is

$$
\begin{equation*}
x \cdot a \otimes_{A} y=x \otimes_{A^{\prime}} a \cdot y \tag{1}
\end{equation*}
$$

for every $a: A \rightarrow A^{\prime}$ in $\mathcal{A}, x \in \psi\left(A^{\prime}, C\right), y \in \phi(B, A)$.

For a fixed distributor $\phi \in \operatorname{Dist}(\mathcal{A}, \mathcal{B})$ one may consider the functor $-\otimes \phi: \operatorname{Dist}(\mathcal{C}, \mathcal{A}) \rightarrow \operatorname{Dist}(\mathcal{C}, \mathcal{B})$ of tensor multiplication by ϕ, given by the assignment

where the component $(\mu \otimes \phi)_{(B, C)}=\overline{\mathrm{L}_{\mathcal{A}}(\hat{\phi}) \circ \hat{\mu}_{(B, C)}}:(\psi \otimes \phi)(B, C) \longrightarrow$ $\left(\psi^{\prime} \otimes \phi\right)(B, C)$ of the natural transformation $\mu \otimes \phi$ at $(B, C) \in \mathcal{B}^{\mathrm{op}} \times \mathcal{C}$ is the mapping given by

$$
(\mu \otimes \phi)_{(B, C)}\left(k \otimes_{A} l\right):=\mu_{(A, C)}(k) \otimes_{A} l
$$

where $A \in \mathcal{A}$ is such that $(k, l) \in \psi(A, C) \times \phi(B, A)$.

2. Equalizer flatness

The aim of this section is to obtain necessary and sufficient conditions for equalizer preservation of the functor $-\otimes \phi$, that will be applied in Section 3.

If $\mathcal{C}=\mathbf{1}$ then replacing $\operatorname{Dist}(\mathbf{1}, \mathcal{A})$ and $\operatorname{Dist}(\mathbf{1}, \mathcal{B})$ by isomorphic categories $\hat{\mathcal{A}}$ and $\hat{\mathcal{B}}$, we may assume that, for $\phi \in \operatorname{Dist}(\mathcal{A}, \mathcal{B}), \psi \in \hat{\mathcal{A}}$, and $B \in \mathcal{B}$,

$$
\begin{equation*}
(\psi \otimes \phi)(B)=\frac{\bigsqcup_{A \in \mathcal{A}} \psi(A) \times \phi(B, A)}{\sim} \tag{2}
\end{equation*}
$$

is the quotient set by the smallest equivalence relation \sim generated by all pairs $(x, y) \sim\left(x^{\prime}, y^{\prime}\right)$ such that

$$
x=x^{\prime} \cdot a=\psi\left(a^{\mathrm{op}}\right)\left(x^{\prime}\right) \quad \text { and } \quad \phi\left(1_{B}^{\mathrm{op}}, a\right)(y)=a \cdot y=y^{\prime}
$$

for some $a: A \rightarrow A^{\prime}$ in \mathcal{A}.
Note that two parallel morphisms $\mu, \nu: \psi \Rightarrow \chi$ in $\hat{\mathcal{A}}$ always have a canonical equalizer (α, ε), where

$$
\begin{aligned}
\alpha(A) & =\left\{x \in \psi(A) \mid \mu_{A}(x)=\nu_{A}(x)\right\}, \\
\alpha(f)\left(x^{\prime}\right) & =\psi(f)\left(x^{\prime}\right)
\end{aligned}
$$

for every $A, A^{\prime} \in \mathcal{A}, x^{\prime} \in \psi(A)$ and $f: A \rightarrow A^{\prime}$ in $\mathcal{A}^{\mathrm{op}}$, and $\varepsilon_{A}: \alpha(A) \rightarrow \psi(A)$ is the inclusion mapping for every $A \in \mathcal{A}$.

We shall need the following
Lemma 1. Let $\phi \in \operatorname{Dist}(\mathcal{A}, \mathcal{B})$ and $\psi=\mathcal{A}^{\mathrm{op}}(A,-)=\mathcal{A}(-, A) \in \hat{\mathcal{A}}$, $A \in \mathcal{A}$. Then $a^{\mathrm{op}} \otimes_{A_{0}} y=\left(a^{\prime}\right)^{\mathrm{op}} \otimes_{A^{\prime}} y^{\prime}$ in $(\psi \otimes \phi)(B)$ if and only if $a \cdot y=a^{\prime} \cdot y^{\prime}$.

Proof. Necessity. The equality $a^{\mathrm{op}} \otimes_{A_{0}} y=\left(a^{\prime}\right)^{\mathrm{op}} \otimes_{A^{\prime}} y^{\prime}$ in $(\psi \otimes \phi)(B)$ means that there exists a "commutative" diagram

Hence

$$
\begin{aligned}
a \cdot y & =a \cdot\left(a_{0} \cdot y_{1}\right)=\left(a \circ a_{0}\right) \cdot y_{1}=x_{1} \cdot y_{1} \\
& =\left(x_{2} \circ a_{1}\right) \cdot y_{1}=x_{2} \cdot\left(a_{1} \cdot y_{1}\right)=x_{2} \cdot y_{2}=\ldots \\
& =x_{n} \cdot y_{n}=\left(a^{\prime} \circ a_{n}\right) \cdot y_{n}=a^{\prime} \cdot\left(a_{n} \cdot y_{n}\right)=a^{\prime} \cdot y^{\prime}
\end{aligned}
$$

Sufficiency. If $a \cdot y=a^{\prime} \cdot y^{\prime}$ then $a^{\mathrm{op}} \otimes_{A_{0}} y=1_{A}^{\mathrm{op}} \cdot a \otimes_{A_{0}} y=1_{A}^{\mathrm{op}} \otimes_{A} a \cdot y=$ $1_{A}^{\mathrm{op}} \otimes_{A} a^{\prime} \cdot y^{\prime}=1_{A}^{\mathrm{op}} \cdot a^{\prime} \otimes_{A^{\prime}} y^{\prime}=\left(a^{\prime}\right)^{\mathrm{op}} \otimes_{A^{\prime}} y^{\prime}$.

The next theorem generalizes Proposition 1.1 of [3] from monoids to small categories.

Theorem 2. For small categories \mathcal{A}, \mathcal{B} and a distributor $\phi \in \operatorname{Dist}(\mathcal{A}, \mathcal{B})$, the following assertions are equivalent:
(1) the functor $-\otimes \phi: \operatorname{Dist}(\mathcal{C}, \mathcal{A}) \rightarrow \operatorname{Dist}(\mathcal{C}, \mathcal{B})$ preserves equalizers for every small category \mathcal{C};
(2) the functor $-\otimes \phi: \operatorname{Dist}(\mathbf{1}, \mathcal{A}) \rightarrow \operatorname{Dist}(\mathbf{1}, \mathcal{B})$ preserves equalizers;
(3) the functor $-\otimes \phi: \operatorname{Dist}(\mathbf{1}, \mathcal{A}) \rightarrow \operatorname{Dist}(\mathbf{1}, \mathcal{B})$ takes regular monomorphisms to monomorphisms, and for every $\chi \in \operatorname{Dist}(\mathbf{1}, \mathcal{A})$ and every $l \in \phi(B, A), k, k^{\prime} \in \chi(A), A \in \mathcal{A}, B \in \mathcal{B}$, the equality $k \otimes_{A} l=k^{\prime} \otimes_{A} l$ in $(\chi \otimes \phi)(B)$ implies that $l=a \cdot l^{\prime}$ and $k \cdot a=k^{\prime} \cdot$ a for some $a: A^{\prime} \rightarrow A$ in \mathcal{A} and $l^{\prime} \in \phi\left(B, A^{\prime}\right)$.

Proof. Obviously (1) $\Rightarrow(2)$. The implication (2) \Rightarrow (1) holds because limits in functor categories are pointwise.
$(3) \Rightarrow(2)$. Assume that condition (3) is satisfied. Again, we identify $\operatorname{Dist}(\mathbf{1}, \mathcal{A})$ and $\operatorname{Dist}(\mathbf{1}, \mathcal{B})$ with $\hat{\mathcal{A}}$ and $\hat{\mathcal{B}}$, respectively. Consider arbitrary $\psi, \chi \in \hat{\mathcal{A}}$ and $\mu, \nu: \psi \Rightarrow \chi$. It suffices to prove that the functor $-\otimes \phi$ preserves the canonical equalizer (α, ε) of (μ, ν). For this, we need to prove that the distributor $\alpha \otimes \phi$ is naturally isomorphic to the canonical equalizer $\left(\alpha^{\prime}, \varepsilon^{\prime}\right)$ of $(\mu \otimes \phi, \nu \otimes \phi)$ in $\hat{\mathcal{B}}$.

Note that, for every $B \in \mathcal{B},(\alpha \otimes \phi)(B)=\frac{\bigsqcup_{A \in \mathcal{A}} \alpha(A) \times \phi(B, A)}{\approx}$ and

$$
\begin{aligned}
\alpha^{\prime}(B) & =\left\{z \in(\psi \otimes \phi)(B) \mid(\mu \otimes \phi)_{B}(z)=(\nu \otimes \phi)_{B}(z)\right\} \\
& =\left\{\left.x \otimes_{A} y \in \frac{\bigsqcup_{A \in \mathcal{A}} \psi(A) \times \phi(B, A)}{\sim} \right\rvert\, \mu_{A}(x) \otimes_{A} y=\nu_{A}(x) \otimes_{A} y\right\},
\end{aligned}
$$

where \sim and \approx are the relations defined as in (2). If $x \otimes_{A} y \in(\alpha \otimes \phi)(B)$ then $(x, y) \in \psi(A) \times \phi(B, A)$, and $\mu_{A}(x) \otimes_{A} y=\nu_{A}(x) \otimes_{A} y$, because

$$
\mu_{A}(x)=\mu_{A}\left(\varepsilon_{A}(x)\right)=(\mu \circ \varepsilon)_{A}(x)=(\nu \circ \varepsilon)_{A}(x)=\nu_{A}\left(\varepsilon_{A}(x)\right)=\nu_{A}(x) .
$$

Hence we may define a mapping $\tau_{B}:(\alpha \otimes \phi)(B) \rightarrow \alpha^{\prime}(B)$ by

$$
\tau_{B}\left(x \otimes_{A} y\right):=x \otimes_{A} y .
$$

It is straightforward to show that $\tau=\left(\tau_{B}\right)_{B \in \mathcal{B o p}}: \alpha \otimes \phi \Rightarrow \alpha^{\prime}$ is a natural transformation and the triangle in diagram (3) commutes. Since $\varepsilon \otimes \phi$ is a monomorphism by the assumption, we conclude that τ is a monomorphism.

To finish the proof, we show that each $\tau_{B}, B \in \mathcal{B}$, is surjective (hence an isomorphism in Set, and thus τ is an isomorphism in $\hat{\mathcal{B}}$. Let $x \otimes_{A} y \in \alpha^{\prime}(B)$, so $x \in \psi(A), y \in \phi(B, A)$, and $\mu_{A}(x) \otimes_{A} y=\nu_{A}(x) \otimes_{A} y$ in $(\chi \otimes \phi)(B)$ for some $A \in \mathcal{A}$. By the assumption, there exist $a: A^{\prime} \rightarrow A$ in \mathcal{A} and $y^{\prime} \in \phi\left(B, A^{\prime}\right)$ such that $y=a \cdot y^{\prime}$ and $\chi\left(a^{\mathrm{op}}\right)\left(\mu_{A}(x)\right)=\chi\left(a^{\mathrm{op}}\right)\left(\nu_{A}(x)\right)$. Now $\psi\left(a^{\mathrm{op}}\right)(x) \in \psi\left(A^{\prime}\right)$ and

$$
\mu_{A^{\prime}}\left(\psi\left(a^{\mathrm{op}}\right)(x)\right)=\chi\left(a^{\mathrm{op}}\right)\left(\mu_{A}(x)\right)=\chi\left(a^{\mathrm{op}}\right)\left(\nu_{A}(x)\right)=\nu_{A^{\prime}}\left(\psi\left(a^{\mathrm{op}}\right)(x)\right)
$$

mean that $\psi\left(a^{\mathrm{op}}\right)(x) \in \alpha\left(A^{\prime}\right)$ and $\psi\left(a^{\mathrm{op}}\right)(x) \otimes_{A^{\prime}} y^{\prime} \in(\alpha \otimes \phi)(B)$. Using property (1) we obtain

$$
\begin{aligned}
\tau_{B}\left(\psi\left(a^{\mathrm{op}}\right)(x) \otimes_{A^{\prime}} y^{\prime}\right) & =\psi\left(a^{\mathrm{op}}\right)(x) \otimes_{A^{\prime}} y^{\prime}=x \cdot a \otimes_{A^{\prime}} y^{\prime} \\
& =x \otimes_{A} a \cdot y^{\prime}=x \otimes_{A} y
\end{aligned}
$$

(2) \Rightarrow (3). Assume that $-\otimes \phi$ preserves equalizers. Then it obviousy takes regular monomorphisms to monomorphisms. Suppose that $\chi \in \hat{\mathcal{A}}$, $l \in \phi(B, A), k, k^{\prime} \in \chi(A), A \in \mathcal{A}, B \in \mathcal{B}$, are such that $k \otimes_{A} l=k^{\prime} \otimes_{A} l$ in $(\chi \otimes \phi)(B)$. Consider the functor $\psi=\mathcal{A}^{\mathrm{op}}(A,-): \mathcal{A}^{\mathrm{op}} \rightarrow$ Set, and, for every $A^{\prime} \in \mathcal{A}$, define the mappings $\mu_{A^{\prime}}, \nu_{A^{\prime}}: \psi\left(A^{\prime}\right) \rightarrow \chi\left(A^{\prime}\right)$ by

$$
\begin{aligned}
\mu_{A^{\prime}}\left(a^{\mathrm{op}}\right) & :=\chi\left(a^{\mathrm{op}}\right)(k)=k \cdot a, \\
\nu_{A^{\prime}}\left(a^{\mathrm{op}}\right) & :=\chi\left(a^{\mathrm{op}}\right)\left(k^{\prime}\right)=k^{\prime} \cdot a,
\end{aligned}
$$

$a: A^{\prime} \rightarrow A$ in \mathcal{A}. Since

$$
\begin{aligned}
\left(\chi\left(a_{1}^{\mathrm{op}}\right) \circ \mu_{A^{\prime}}\right)\left(a^{\mathrm{op}}\right) & =\chi\left(a_{1}^{\mathrm{op}}\right)(k \cdot a)=(k \cdot a) \cdot a_{1}=k \cdot\left(a \circ a_{1}\right) \\
& =\mu_{A^{\prime \prime}}\left(\left(a \circ a_{1}\right)^{\mathrm{op}}\right)=\mu_{A^{\prime \prime}}\left(a_{1}^{\mathrm{op}} \circ a^{\mathrm{op}}\right) \\
& =\left(\mu_{A^{\prime \prime}} \circ \psi\left(a_{1}^{\mathrm{op}}\right)\right)\left(a^{\mathrm{op}}\right)
\end{aligned}
$$

for every $a: A^{\prime} \rightarrow A$ and $a_{1}: A^{\prime \prime} \rightarrow A^{\prime}$ in $\mathcal{A}, \mu: \psi \Rightarrow \chi$ (and analogously $\nu: \psi \Rightarrow \chi)$ is a natural transformation.

Let (α, ε) be the canonical equalizer of (μ, ν). By the assumption,

is an equalizer diagram in $\hat{\mathcal{B}}$. If $\left(\alpha^{\prime}, \varepsilon^{\prime}\right)$ is the canonical equalizer of the pair $(\mu \otimes \phi, \nu \otimes \phi)$ and $B_{1} \in \mathcal{B}$ then $(\alpha \otimes \phi)\left(B_{1}\right)=\frac{\bigsqcup_{A_{1} \in \mathcal{A}} \alpha\left(A_{1}\right) \times \phi\left(B_{1}, A_{1}\right)}{\approx}$ and

$$
\alpha^{\prime}\left(B_{1}\right)=\left\{\left.x \otimes_{A_{2}} y \in \frac{\bigsqcup_{A_{1} \in \mathcal{A}} \psi\left(A_{1}\right) \times \phi\left(B_{1}, A_{1}\right)}{\sim} \right\rvert\, \mu_{A_{2}}(x) \otimes y=\nu_{A_{2}}(x) \otimes y\right\} .
$$

If $x \otimes_{A_{2}} y \in(\alpha \otimes \phi)\left(B_{1}\right)$ then $y \in \phi\left(B_{1}, A_{2}\right)$ and $x \in \alpha\left(A_{2}\right)$. The last means that $x \in \psi\left(A_{2}\right)$ and $\mu_{A_{2}}(x)=\nu_{A_{2}}(x)$, so $\mu_{A_{2}}(x) \otimes_{A_{2}} y=\nu_{A_{2}}(x) \otimes_{A_{2}} y$ and $x \otimes_{A_{2}} y \in \alpha^{\prime}\left(B_{1}\right)$. Therefore $(\alpha \otimes \phi)\left(B_{1}\right) \subseteq \alpha^{\prime}\left(B_{1}\right)$ for every $B_{1} \in \mathcal{B}$. Using the universal property of equalizers we conclude $\alpha \otimes \phi=\alpha^{\prime}$. Now for the element

$$
1_{A}^{\mathrm{op}} \otimes_{A} l \in \frac{\bigsqcup_{A_{1} \in \mathcal{A}} \psi\left(A_{1}\right) \times \phi\left(B, A_{1}\right)}{\sim}=(\psi \otimes \phi)(B)
$$

we calculate
$\mu_{A}\left(1_{A}^{\mathrm{op}}\right) \otimes_{A} l=k \cdot 1_{A} \otimes_{A} l=k \otimes_{A} l=k^{\prime} \otimes_{A} l=k^{\prime} \cdot 1_{A} \otimes_{A} l=\nu_{A}\left(1_{A}^{\mathrm{op}}\right) \otimes_{A} l$.
Hence $1_{A}^{\mathrm{op}} \otimes_{A} l \in \alpha^{\prime}(B)=(\alpha \otimes \phi)(B)$, which means that $1_{A}^{\mathrm{op}} \otimes_{A} l=a^{\mathrm{op}} \otimes_{A_{1}} l^{\prime}$ in $(\alpha \otimes \phi)(B)$ for some $l^{\prime} \in \phi\left(B, A_{1}\right), a: A_{1} \rightarrow A$ in \mathcal{A} such that $a^{\text {op }} \in \alpha\left(A_{1}\right)$. The first equality implies by Lemma 1 that $l=a \cdot l^{\prime}$ and the fact that $a^{\mathrm{op}} \in \alpha\left(A_{1}\right)$ implies that $k \cdot a=\mu_{A_{1}}\left(a^{\text {op }}\right)=\nu_{A_{1}}\left(a^{\text {op }}\right)=k^{\prime} \cdot a$.

Remark 3. The second half of Condition (3) in Theorem 2 means that the existence of a "commutative" diagram

implies the existence of a "commutative" diagram

3. Descent functors and effective descent functors

First we recall some general results and definitions. Dualizing a part of Theorem 1, p. 138 of [7], we obtain

Theorem 4. Let $\langle F, G ; \eta, \varepsilon\rangle: \mathcal{Y} \rightarrow \mathcal{X}$ be an adjunction and $\mathbb{T}=\langle F G, \varepsilon$, $F \eta G\rangle$ the comonad it defines in \mathcal{X}. Then there is a (canonical) functor $K: \mathcal{Y} \rightarrow \mathcal{X}^{\mathbb{T}}$, where $\mathcal{X}^{\mathbb{T}}$ is the category of all \mathbb{T}-coalgebras.

The dual of the following theorem of Beck can be found in [1], Theorem 3.9.
Theorem 5. In the situation of Theorem 4, K is full and faithful if and only if η_{Y} is a regular monomorphism for every $Y \in \mathcal{Y}$.

If K is full and faithful then F is called a functor of descent type. If K is an equivalence of categories then F is comonadic or of effective descent type.

We also shall use the following two results.
Lemma 6. If $\langle F, G ; \eta, \varepsilon\rangle: \mathcal{Y} \rightarrow \mathcal{X}$ is an adjunction and $F: \mathcal{Y} \rightarrow \mathcal{X}$ is of descent type then F reflects isomorphisms.

Theorem 7. Let \mathcal{Y}, \mathcal{X} be categories with equalizers. A functor $F: \mathcal{Y} \rightarrow \mathcal{X}$ is comonadic if and only if
(1) F has a right adjoint;
(2) F reflects isomorphisms;
(3) F preserves equalizers of those pairs (h, g) for which $(F(h), F(g))$ is contractible.

Now, let $f: \mathcal{A} \rightarrow \mathcal{B}$ be a functor. We denote $\phi_{f}=\overline{\mathrm{Y}_{\mathcal{B}} \circ f}=\mathcal{B}(-, f(-)) \in$ $\operatorname{Dist}(\mathcal{A}, \mathcal{B})$. Then the restriction-of-scalars functor $f_{*}=-\circ f^{\circ \mathrm{p}}: \hat{\mathcal{B}} \rightarrow \hat{\mathcal{A}}$ has a left adjoint $f_{!}=\mathrm{L}_{\mathcal{A}}\left(\mathrm{Y}_{\mathcal{B}} \circ f\right): \hat{\mathcal{A}} \rightarrow \hat{\mathcal{B}}$ (extension-of-scalars), which is isomorphic to the functor $-\otimes \phi_{f}: \hat{\mathcal{A}} \rightarrow \hat{\mathcal{B}}$ (see [2], Section 6.3).

Definition 8. A functor $f: \mathcal{A} \rightarrow \mathcal{B}$ is called a descent functor (an effective descent functor), if $f_{!}$is of descent type (respectively, comonadic).

Note that the unit $\eta: 1_{\hat{\mathcal{A}}} \Rightarrow f_{*} \circ f_{!}$of the adjunction $f_{!} \dashv f_{*}$ is the natural transformation defined for every $\psi \in \hat{\mathcal{A}}$ by

$$
\begin{aligned}
\left(\eta_{\psi}\right)_{A}: \psi(A) & \rightarrow\left(\left(\psi \otimes \phi_{f}\right) \circ f^{\mathrm{op}}\right)(A)=\frac{\bigsqcup_{A^{\prime} \in \mathcal{A}} \psi\left(A^{\prime}\right) \times \mathcal{B}\left(f(A), f\left(A^{\prime}\right)\right)}{\sim} \\
x & \mapsto x \otimes_{A} 1_{f(A)}
\end{aligned}
$$

$A \in \mathcal{A}, x \in \psi(A)$.
Proposition 9. A functor $f: \mathcal{A} \rightarrow \mathcal{B}$ is a descent functor if and only if $\left(\eta_{\psi}\right)_{A}$ is an injective mapping for every $\psi \in \hat{\mathcal{A}}$ and $A \in \mathcal{A}$.

Proof. For $\psi \in \hat{\mathcal{A}}, \eta_{\psi}$ is a regular monomorphism if and only if all $\left(\eta_{\psi}\right)_{A}$, $A \in \mathcal{A}$, are regular monomorphisms in Set (i.e. injective mappings). Hence the result follows from Theorem 5.

Corollary 10. Descent functors are faithful.
Proof. Consider a descent functor $f: \mathcal{A} \rightarrow \mathcal{B}$ and morphisms $a, a^{\prime}: A \rightarrow$ A_{0} in \mathcal{A} such that $f(a)=f\left(a^{\prime}\right)$. With $\psi=\mathcal{A}^{\mathrm{op}}\left(A_{0},-\right) \in \hat{\mathcal{A}}$ we calculate

$$
\begin{aligned}
a^{\mathrm{op}} \otimes_{A} 1_{f(A)} & =1_{A_{0}}^{\mathrm{op}} \cdot a \otimes_{A} 1_{f(A)}=1_{A_{0}}^{\mathrm{op}} \otimes_{A_{0}} a \cdot 1_{f(A)} \\
& =1_{A_{0}}^{\mathrm{op}} \otimes_{A_{0}} f(a) \circ 1_{f(A)}=1_{A_{0}}^{\mathrm{op}} \otimes_{A_{0}} f(a)=1_{A_{0}}^{\mathrm{op}} \otimes_{A_{0}} f\left(a^{\prime}\right) \\
& =1_{A_{0}}^{\mathrm{op}} \otimes_{A_{0}} f\left(a^{\prime}\right) \circ 1_{f(A)}=1_{A_{0}}^{\mathrm{op}} \cdot a^{\prime} \otimes_{A} 1_{f(A)}=\left(a^{\prime}\right)^{\mathrm{op}} \otimes_{A} 1_{f(A)}
\end{aligned}
$$

in $\left(\psi \otimes \phi_{f}\right)(f(A))$. Since $\left(\eta_{\psi}\right)_{A}$ is injective, $a=a^{\prime}$.
Now we give some sufficient conditions for f to be an effective descent functor. By Theorem 7, f is an effective descent functor, if the functor $f_{!}: \hat{\mathcal{A}} \rightarrow \hat{\mathcal{B}}$ reflects isomorphisms and preserves all equalizers. Specializing Theorem 2 to ϕ_{f} we obtain

Proposition 11. Let $f: \mathcal{A} \rightarrow \mathcal{B}$ be a functor. The functor $-\otimes \phi_{f}: \hat{\mathcal{A}} \rightarrow \hat{\mathcal{B}}$ preserves equalizers if and only if
(1) it takes regular monomorphisms to monomorphisms, and
(2) for every $\chi \in \hat{\mathcal{A}}$ and every $l \in \mathcal{B}(B, f(A))$, $k, k^{\prime} \in \chi(A), A \in \mathcal{A}, B \in$ \mathcal{B}, the equality $k \otimes_{A} l=k^{\prime} \otimes_{A} l$ in $\left(\chi \otimes_{f}\right)(B)$ implies that $l=$ $f(a) \circ l^{\prime}$ and $\chi\left(a^{\mathrm{op}}\right)(k)=\chi\left(a^{\mathrm{op}}\right)\left(k^{\prime}\right)$ for some $a: A^{\prime} \rightarrow A$ in \mathcal{A} and $l^{\prime} \in \mathcal{B}\left(B, f\left(A^{\prime}\right)\right)$.

Proposition 12. Let $f: \mathcal{A} \rightarrow \mathcal{B}$ be a functor. If f reflects split epimorphisms and the functor $-\otimes \phi_{f}: \hat{\mathcal{A}} \rightarrow \hat{\mathcal{B}}$ preserves equalizers then f is an effective descent functor.

Proof. Suppose that $x \otimes_{A} 1_{f(A)}=x^{\prime} \otimes_{A} 1_{f(A)}$ in $\left(\psi \otimes \phi_{f}\right)(f(A)), A \in \mathcal{A}$, $\psi \in \hat{\mathcal{A}}, x, x^{\prime} \in \psi(A)$. By Proposition 11, $1_{f(A)}=f(a) \circ l^{\prime}$ and $\psi\left(a^{\mathrm{op}}\right)(x)=$ $\psi\left(a^{\mathrm{op}}\right)\left(x^{\prime}\right)$ for some $a: A^{\prime} \rightarrow A$ in \mathcal{A} and $l^{\prime}: f(A) \rightarrow f\left(A^{\prime}\right)$ in \mathcal{B}. Hence $a \circ a^{\prime}=1_{A}$ for some $a^{\prime}: A \rightarrow A^{\prime}$ in \mathcal{A}. Consequently,

$$
x=\psi\left(1_{A}^{\mathrm{op}}\right)(x)=\psi\left(\left(a^{\prime}\right)^{\mathrm{op}} \circ a^{\mathrm{op}}\right)(x)=\psi\left(\left(a^{\prime}\right)^{\mathrm{op}} \circ a^{\mathrm{op}}\right)\left(x^{\prime}\right)=\psi\left(1_{A}^{\mathrm{op}}\right)\left(x^{\prime}\right)=x^{\prime}
$$

which means that $\left(\eta_{\psi}\right)_{A}$ is injective for every $\psi \in \hat{\mathcal{A}}$ and $A \in \mathcal{A}$. By Proposition $9, f$ is a descent functor and by Lemma $6, f!$ reflects isomorphisms. The result now follows from Theorem 7.

Recall that a functor $f: \mathcal{A} \rightarrow \mathcal{B}$ is flat if the functor $-\otimes \phi_{f}: \hat{\mathcal{A}} \rightarrow \hat{\mathcal{B}}$ preserves finite limits. Similarly we say that a functor $f: \mathcal{A} \rightarrow \mathcal{B}$ is pullback flat (equalizer flat) if the functor $-\otimes \phi_{f}: \hat{\mathcal{A}} \rightarrow \hat{\mathcal{B}}$ preserves pullbacks (equalizers). Since pullback flatness implies equalizer flatness, by Proposition 12 we have the following implications for f :
flat and reflects split epis \Longrightarrow pullback flat and reflects split epis
\Longrightarrow equalizer flat and reflects split epis \Longrightarrow effective descent functor
\Longrightarrow descent functor \Longrightarrow faithful.
Using the fact that the left Kan extension $\mathrm{L}_{\mathcal{A}}(F): \hat{\mathcal{A}} \rightarrow$ Set of a functor $F: \mathcal{A} \rightarrow$ Set preserves pullbacks if and only if the category of elements of F is co-pseudofiltered (see [7], p. 212), as in Theorem 6.4 of [2] one can see that a functor $f: \mathcal{A} \rightarrow \mathcal{B}$ is pullback flat if and only if the category $B \downarrow f$ is co-pseudofiltered for every object $B \in \mathcal{B}$.

Corollary 13. If f reflects split epimorphisms and the category $B \downarrow f$ is co-pseudofiltered for every object $B \in \mathcal{B}$ then f is an effective descent functor.

Corollary 14. Every faithful functor between groupoids is an effective descent functor.

Proof. Suppose that $f: \mathcal{A} \rightarrow \mathcal{B}$ is a faithful functor between groupoids. If $f\left(a_{1}\right) \circ b_{1}=b_{2}=f\left(a_{2}\right) \circ b_{1}$ in the right hand side of the diagram

then $f\left(a_{1}\right)=f\left(a_{2}\right)$ and $a_{1}=a_{2}$. Hence we can complete the diagram with dotted arrows. The rest of the proof is illustrated by the diagram

References

[1] M. Barr and Ch. Wells, Toposes, Triples and Theories, Repr. Theory Appl. Categ. 12 (2005) (electronic).
[2] J. Bénabou, Distributors at Work, 2000; http://www.mathematik.tu-darmstadt.de /~streicher/FIBR/DiWo.pdf.gz.
[3] W. Bentz and S. Bulman-Fleming, On equalizer-flat acts, Semigroup Forum 58 (1999), 5-16.
[4] F. Borceux, Handbook of Categorical Algebra. 1. Basic Category Theory, Cambridge University Press, Cambridge, 1994.
[5] F. Borceux, G. Janelidze, Galois Theories, Cambridge University Press, Cambridge, 2001.
[6] V. Laan, On descent theory for monoid actions, Appl. Categ. Structures 12 (2004), 479-483.
[7] S. Mac Lane, Categories for the Working Mathematician, Springer Verlag, New York, 1971.

University of Tartu, Institute of Mathematics, J. Liivi 2, 50409 Tartu, Estonia

E-mail address: valdis.laan@ut.ee
University of Tartu, Institute of Estonian and General Linquistics, Ülikooli 18, 50090 Tartu, Estonia

E-mail address: pille.penjam@ut.ee

[^0]: Received January 24, 2007.
 2000 Mathematics Subject Classification. 18A22, 18A35.
 Key words and phrases. Distributor, equalizer, functor, descent.
 The research of the first-named author was supported by Estonian Science Foundation Grant 6238.

