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On descent theory for distributors

Valdis Laan and Pille Penjam

Abstract. We give necessary and sufficient conditions for equalizer
preservation of the functor of tensor multiplication by a distributor and
some sufficient conditions for a functor between small categories to be
an effective descent functor.

1. Introduction

A functor f : A → B between small categories is called an effective descent
functor if the so-called extension-of-scalars functor f! : Fun(Aop,Set) −→
Fun(Bop,Set), induced by f , is comonadic. In this paper we give some suf-
ficient conditions for f to be an effective descent functor. In Section 2 we
give necessary and sufficient conditions for equalizer preservation for a more
general situation than just for f!. The results of Section 3 generalize the re-
sults of [6], where similar problems were considered for one-object categories
(i.e. monoids) A and B.

Throughout this paper, A,B and C will stand for small categories. By 1 we
denote the discrete category with a single object ∗ and Â = Fun(Aop,Set).
A distributor (or a profunctor; see e.g. [4]) from A to B is a functor φ :
Bop×A → Set. We write Dist(A,B) = Fun(Bop×A,Set). By (−̂) : Fun(Bop×

A,Set) −→ Fun(A, B̂) and (−) : Fun(A, B̂) −→ Fun(Bop ×A,Set) we denote
in the obvious way defined mutually inverse isomorphism functors.

Let φ : Bop × A → Set be a distributor and x ∈ φ(B,A), B ∈ B, A ∈ A.
If a : A → A′ in A then we write a · x := φ(1op

B , a)(x) ∈ φ(B,A′) and if
b : B′ → B in B then we write x · b := φ(bop, 1A)(x) ∈ φ(B′, A).

Consider now distributors φ : Bop × A → Set and ψ : Aop × C → Set,
and the Yoneda functor YA : A → Â. Then φ̂ : A → B̂ and there exists
a left Kan extension LYA

(φ̂) : Â → B̂ of φ̂ along YA (this follows from the
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existence of small colimits in Set), which is denoted just LA(φ̂). Thus the
composite or tensor product of ψ and φ can be defined as the distributor

ψ ⊗ φ := LA(φ̂) ◦ ψ̂ : Bop × C → Set.

C B̂
LA(φ̂)◦ψ̂

//

Â

C

OO

ψ̂

Â Aoo YA
A

B̂

φ̂

��

Â

B̂

LA(φ̂)

$$IIIIIIIIIIIIIIII

Note that for every C ∈ C, B ∈ B,

(ψ ⊗ φ)(B,C) =

⊔

A∈A ψ(A,C) × φ(B,A)

∼

is the quotient set by the smallest equivalence relation ∼ generated by all
pairs (x, y) ∼ (x′, y′), x ∈ ψ(A,C), y ∈ φ(B,A), x′ ∈ ψ(A′, C), y′ ∈ φ(B,A′),
such that

x = x′ · a and a · y = y′

for some a : A → A′ in A. The last equalities can be illustrated by the
“commutative” diagram

A A′a //A

C
x %%

A′

C
x′yy

B

A

y

yy

B

A′

y′

%%

where the dotted arrow labelled by y, for example, stands for the element y
of φ(B,A). It is not difficult to see that (x, y) ∼ (x′, y′) if and only if there
exists a “commutative” diagram

A A1
oo a0

A

C
x ��

A1

C
x1��

B

A

y

��

B

A1

y1

��
A1 A2

a1 //A1

C
x1 ��

A2

C
x2��

B

A1

y1

��

B

A2

y2

��
A2 A3

oo a2
A2

C
x2 ��

A3

C
x3��

B

A2

y2

��

B

A3

y3

��
· · · An A′an //An

C
xn ��

A′

C
x′��

B

An

yn

��

B

A′

y′

��
.

We denote the equivalence class of (x, y) ∈ ψ(A,C) × φ(B,A) by x⊗A y,
or just x⊗ y. So the basic rule for calculations is

x · a⊗A y = x⊗A′ a · y (1)

for every a : A→ A′ in A, x ∈ ψ(A′, C), y ∈ φ(B,A).
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For a fixed distributor φ ∈ Dist(A,B) one may consider the functor
− ⊗ φ : Dist(C,A) → Dist(C,B) of tensor multiplication by φ, given by the
assignment

ψ′ ψ′ ⊗ φ
� //

ψ

ψ′

µ

��

ψ ψ ⊗ φ
� // ψ ⊗ φ

ψ′ ⊗ φ

µ⊗φ

��

where the component (µ ⊗ φ)(B,C) = LA(φ̂) ◦ µ̂(B,C) : (ψ ⊗ φ)(B,C) −→
(ψ′ ⊗ φ)(B,C) of the natural transformation µ ⊗ φ at (B,C) ∈ Bop × C is
the mapping given by

(µ⊗ φ)(B,C)(k ⊗A l) := µ(A,C)(k) ⊗A l

where A ∈ A is such that (k, l) ∈ ψ(A,C) × φ(B,A).

2. Equalizer flatness

The aim of this section is to obtain necessary and sufficient conditions for
equalizer preservation of the functor −⊗φ, that will be applied in Section 3.

If C = 1 then replacing Dist(1,A) and Dist(1,B) by isomorphic categories

Â and B̂, we may assume that, for φ ∈ Dist(A,B), ψ ∈ Â, and B ∈ B,

(ψ ⊗ φ)(B) =

⊔

A∈A ψ(A) × φ(B,A)

∼
(2)

is the quotient set by the smallest equivalence relation ∼ generated by all
pairs (x, y) ∼ (x′, y′) such that

x = x′ · a = ψ(aop)(x′) and φ(1op
B , a)(y) = a · y = y′

for some a : A→ A′ in A.
Note that two parallel morphisms µ, ν : ψ ⇒ χ in Â always have a canon-

ical equalizer (α, ε), where

α(A) = {x ∈ ψ(A) | µA(x) = νA(x)},

α(f)(x′) = ψ(f)(x′)

for every A,A′ ∈ A, x′ ∈ ψ(A) and f : A→ A′ in Aop, and εA : α(A) → ψ(A)
is the inclusion mapping for every A ∈ A.

We shall need the following

Lemma 1. Let φ ∈ Dist(A,B) and ψ = Aop(A,−) = A(−, A) ∈ Â,
A ∈ A. Then aop⊗A0

y = (a′)op⊗A′y′ in (ψ⊗φ)(B) if and only if a·y = a′ ·y′.
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Proof. Necessity. The equality aop ⊗A0
y = (a′)op ⊗A′ y′ in (ψ ⊗ φ)(B)

means that there exists a “commutative” diagram

A0 A1
oo a0

A0

A
a ��?

??
?

A1

A
x1����

��

B

A0

y

��

B

A1

y1

��
A1 A2

a1 //A1

A
x1 ��?

??
?

A2

A
x2����

��

B

A1

y1

��

B

A2

y2

��
A2 A3

oo a2
A2

A
x2 ��?

??
?

A3

A
x3����

��

B

A2

y2

��

B

A3

y3

��
· · · An A′an //An

A
xn ��?

??
?

A′

A
a′����

��

B

An

yn

��

B

A′

y′

��
.

Hence

a · y = a · (a0 · y1) = (a ◦ a0) · y1 = x1 · y1

= (x2 ◦ a1) · y1 = x2 · (a1 · y1) = x2 · y2 = . . .

= xn · yn = (a′ ◦ an) · yn = a′ · (an · yn) = a′ · y′.

Sufficiency. If a ·y = a′ ·y′ then aop⊗A0
y = 1op

A ·a⊗A0
y = 1op

A ⊗A a ·y =
1op
A ⊗A a

′ · y′ = 1op
A · a′ ⊗A′ y′ = (a′)op ⊗A′ y′. �

The next theorem generalizes Proposition 1.1 of [3] from monoids to small
categories.

Theorem 2. For small categories A,B and a distributor φ ∈ Dist(A,B),
the following assertions are equivalent:

(1) the functor − ⊗ φ : Dist(C,A) → Dist(C,B) preserves equalizers for
every small category C;

(2) the functor −⊗ φ : Dist(1,A) → Dist(1,B) preserves equalizers;
(3) the functor − ⊗ φ : Dist(1,A) → Dist(1,B) takes regular monomor-

phisms to monomorphisms, and for every χ ∈ Dist(1,A) and every
l ∈ φ(B,A), k, k′ ∈ χ(A), A ∈ A, B ∈ B, the equality k⊗A l = k′⊗A l

in (χ⊗φ)(B) implies that l = a·l′ and k·a = k′·a for some a : A′ → A

in A and l′ ∈ φ(B,A′).

Proof. Obviously (1) ⇒ (2). The implication (2) ⇒ (1) holds because
limits in functor categories are pointwise.

(3) ⇒ (2). Assume that condition (3) is satisfied. Again, we identify

Dist(1,A) and Dist(1,B) with Â and B̂, respectively. Consider arbitrary

ψ,χ ∈ Â and µ, ν : ψ ⇒ χ. It suffices to prove that the functor − ⊗ φ

preserves the canonical equalizer (α, ε) of (µ, ν). For this, we need to prove
that the distributor α⊗ φ is naturally isomorphic to the canonical equalizer
(α′, ε′) of (µ⊗ φ, ν ⊗ φ) in B̂.

α⊗ φ ψ ⊗ φ
ε⊗φ //α⊗ φ

α′
τ !!D

D
D

α′

ψ ⊗ φ

ε′

==zzzzzz

ψ ⊗ φ χ⊗ φ
µ⊗φ //

ψ ⊗ φ χ⊗ φ
ν⊗φ

//
(3)
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Note that, for every B ∈ B, (α ⊗ φ)(B) =
⊔

A∈A
α(A)×φ(B,A)

≈
and

α′(B) = {z ∈ (ψ ⊗ φ)(B) | (µ⊗ φ)B(z) = (ν ⊗ φ)B(z)}

=

{

x⊗A y ∈

⊔

A∈A ψ(A) × φ(B,A)

∼
| µA(x) ⊗A y = νA(x) ⊗A y

}

,

where ∼ and ≈ are the relations defined as in (2). If x ⊗A y ∈ (α ⊗ φ)(B)
then (x, y) ∈ ψ(A) × φ(B,A), and µA(x) ⊗A y = νA(x) ⊗A y, because

µA(x) = µA(εA(x)) = (µ ◦ ε)A(x) = (ν ◦ ε)A(x) = νA(εA(x)) = νA(x).

Hence we may define a mapping τB : (α⊗ φ)(B) → α′(B) by

τB(x⊗A y) := x⊗A y.

It is straightforward to show that τ = (τB)B∈Bop : α ⊗ φ ⇒ α′ is a natural
transformation and the triangle in diagram (3) commutes. Since ε ⊗ φ is a
monomorphism by the assumption, we conclude that τ is a monomorphism.

To finish the proof, we show that each τB , B ∈ B, is surjective (hence an

isomorphism in Set, and thus τ is an isomorphism in B̂). Let x⊗Ay ∈ α′(B),
so x ∈ ψ(A), y ∈ φ(B,A), and µA(x) ⊗A y = νA(x) ⊗A y in (χ ⊗ φ)(B)
for some A ∈ A. By the assumption, there exist a : A′ → A in A and
y′ ∈ φ(B,A′) such that y = a · y′ and χ(aop)(µA(x)) = χ(aop)(νA(x)). Now
ψ(aop)(x) ∈ ψ(A′) and

µA′(ψ(aop)(x)) = χ(aop)(µA(x)) = χ(aop)(νA(x)) = νA′(ψ(aop)(x))

mean that ψ(aop)(x) ∈ α(A′) and ψ(aop)(x) ⊗A′ y′ ∈ (α ⊗ φ)(B). Using
property (1) we obtain

τB
(

ψ(aop)(x) ⊗A′ y′
)

= ψ(aop)(x) ⊗A′ y′ = x · a⊗A′ y′

= x⊗A a · y
′ = x⊗A y.

(2) ⇒ (3). Assume that − ⊗ φ preserves equalizers. Then it obviousy

takes regular monomorphisms to monomorphisms. Suppose that χ ∈ Â,
l ∈ φ(B,A), k, k′ ∈ χ(A), A ∈ A, B ∈ B, are such that k ⊗A l = k′ ⊗A l in
(χ⊗φ)(B). Consider the functor ψ = Aop(A,−) : Aop → Set, and, for every
A′ ∈ A, define the mappings µA′ , νA′ : ψ(A′) → χ(A′) by

µA′(aop) := χ(aop)(k) = k · a,

νA′(aop) := χ(aop)(k′) = k′ · a,

a : A′ → A in A. Since

(χ(aop
1 ) ◦ µA′) (aop) = χ(aop

1 )(k · a) = (k · a) · a1 = k · (a ◦ a1)

= µA′′ ((a ◦ a1)
op) = µA′′ (aop

1 ◦ aop)

= (µA′′ ◦ ψ(aop
1 )) (aop)
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for every a : A′ → A and a1 : A′′ → A′ in A, µ : ψ ⇒ χ (and analogously
ν : ψ ⇒ χ) is a natural transformation.

Aop(A,A′′) = ψ(A′′) χ(A′′)
µ

A′′

//

Aop(A,A′) = ψ(A′)

Aop(A,A′′) = ψ(A′′)

a
op

1 ◦−=ψ(aop1 )

��

Aop(A,A′) = ψ(A′) χ(A′)
µ

A′ // χ(A′)

χ(A′′)

χ(aop1 )=−·a1

��

Let (α, ε) be the canonical equalizer of (µ, ν). By the assumption,

α⊗ φ ψ ⊗ φ
ε⊗φ // ψ ⊗ φ χ⊗ φ

µ⊗φ //
ψ ⊗ φ χ⊗ φ

ν⊗φ
//

is an equalizer diagram in B̂. If (α′, ε′) is the canonical equalizer of the pair

(µ⊗ φ, ν ⊗ φ) and B1 ∈ B then (α⊗ φ)(B1) =

⊔

A1∈A
α(A1)×φ(B1,A1)

≈
and

α′(B1) =

{

x⊗A2
y∈

⊔

A1∈A
ψ(A1)×φ(B1, A1)

∼
| µA2

(x) ⊗ y = νA2
(x) ⊗ y

}

.

If x⊗A2
y ∈ (α⊗φ)(B1) then y ∈ φ(B1, A2) and x ∈ α(A2). The last means

that x ∈ ψ(A2) and µA2
(x) = νA2

(x), so µA2
(x) ⊗A2

y = νA2
(x) ⊗A2

y and
x⊗A2

y ∈ α′(B1). Therefore (α⊗ φ)(B1) ⊆ α′(B1) for every B1 ∈ B. Using
the universal property of equalizers we conclude α ⊗ φ = α′. Now for the
element

1op
A ⊗A l ∈

⊔

A1∈A
ψ(A1) × φ(B,A1)

∼
= (ψ ⊗ φ)(B)

we calculate

µA(1op
A ) ⊗A l = k · 1A ⊗A l = k ⊗A l = k′ ⊗A l = k′ · 1A ⊗A l = νA(1op

A ) ⊗A l.

Hence 1op
A ⊗Al ∈ α′(B) = (α⊗φ)(B), which means that 1op

A ⊗Al = aop⊗A1
l′ in

(α⊗ φ)(B) for some l′ ∈ φ(B,A1), a : A1 → A in A such that aop ∈ α(A1).
The first equality implies by Lemma 1 that l = a · l′ and the fact that
aop ∈ α(A1) implies that k · a = µA1

(aop) = νA1
(aop) = k′ · a. �

Remark 3. The second half of Condition (3) in Theorem 2 means that
the existence of a “commutative” diagram

A A1
oo a0

A

∗
k ��

A1

∗
k1��

B

A

l

��

B

A1

l1

��
A1 A2

a1 //A1

∗
k1 ��

A2

∗
k2��

B

A1

l1

��

B

A2

l2

��
A2 A3

oo a2
A2

∗
k2 ��

A3

∗
k3��

B

A2

l2

��

B

A3

l3

��
· · · An A′an //An

∗
kn

��

A′

∗
k′��

B

An

ln

��

B

A′

l

��
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implies the existence of a “commutative” diagram

A A′oo a
A

∗
k ""

A′

∗
k·a||

B

A

l

||

B

A′

l′

""
A′ A

a //A′

∗
k·a ""

A

∗
k′||

B

A′

l′

||

B

A

l

""
.

3. Descent functors and effective descent functors

First we recall some general results and definitions. Dualizing a part of
Theorem 1, p. 138 of [7], we obtain

Theorem 4. Let 〈F,G; η, ε〉 : Y → X be an adjunction and T = 〈FG, ε,
FηG〉 the comonad it defines in X . Then there is a (canonical) functor
K : Y → XT, where XT is the category of all T-coalgebras.

The dual of the following theorem of Beck can be found in [1], Theorem 3.9.

Theorem 5. In the situation of Theorem 4, K is full and faithful if and
only if ηY is a regular monomorphism for every Y ∈ Y.

If K is full and faithful then F is called a functor of descent type. If K is
an equivalence of categories then F is comonadic or of effective descent type.

We also shall use the following two results.

Lemma 6. If 〈F,G; η, ε〉 : Y → X is an adjunction and F : Y → X is of
descent type then F reflects isomorphisms.

Theorem 7. Let Y,X be categories with equalizers. A functor F : Y → X
is comonadic if and only if

(1) F has a right adjoint;
(2) F reflects isomorphisms;
(3) F preserves equalizers of those pairs (h, g) for which (F (h), F (g)) is

contractible.

Now, let f : A → B be a functor. We denote φf = YB ◦ f = B(−, f(−)) ∈

Dist(A,B). Then the restriction-of-scalars functor f∗ = − ◦ fop : B̂ → Â

has a left adjoint f! = LA(YB ◦ f) : Â → B̂ (extension-of-scalars), which is

isomorphic to the functor −⊗ φf : Â → B̂ (see [2], Section 6.3).

B B̂
YB

//

A Â
YA //A

B

f

��

Â

B̂

LA(YB◦f)

��

B̂

Â

−◦fop

OO

a
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Definition 8. A functor f : A → B is called a descent functor (an effective
descent functor), if f! is of descent type (respectively, comonadic).

Note that the unit η : 1
Â
⇒ f∗ ◦ f! of the adjunction f! a f∗ is the natural

transformation defined for every ψ ∈ Â by

(ηψ)A : ψ(A) → ((ψ ⊗ φf ) ◦ f
op)(A) =

⊔

A′∈A ψ(A′) × B(f(A), f(A′))

∼
,

x 7→ x⊗A 1f(A),

A ∈ A, x ∈ ψ(A).

Proposition 9. A functor f : A → B is a descent functor if and only if
(ηψ)A is an injective mapping for every ψ ∈ Â and A ∈ A.

Proof. For ψ ∈ Â, ηψ is a regular monomorphism if and only if all (ηψ)A,
A ∈ A, are regular monomorphisms in Set (i.e. injective mappings). Hence
the result follows from Theorem 5. �

Corollary 10. Descent functors are faithful.

Proof. Consider a descent functor f : A → B and morphisms a, a′ : A →
A0 in A such that f(a) = f(a′). With ψ = Aop(A0,−) ∈ Â we calculate

aop ⊗A 1f(A) = 1op
A0

· a⊗A 1f(A) = 1op
A0

⊗A0
a · 1f(A)

= 1op
A0

⊗A0
f(a) ◦ 1f(A) = 1op

A0
⊗A0

f(a) = 1op
A0

⊗A0
f(a′)

= 1op
A0

⊗A0
f(a′) ◦ 1f(A) = 1op

A0
· a′ ⊗A 1f(A) =(a′)op ⊗A 1f(A)

in (ψ ⊗ φf )(f(A)). Since (ηψ)A is injective, a = a′. �

Now we give some sufficient conditions for f to be an effective descent
functor. By Theorem 7, f is an effective descent functor, if the functor
f! : Â → B̂ reflects isomorphisms and preserves all equalizers. Specializing
Theorem 2 to φf we obtain

Proposition 11. Let f : A → B be a functor. The functor −⊗φf : Â → B̂
preserves equalizers if and only if

(1) it takes regular monomorphisms to monomorphisms, and

(2) for every χ ∈ Â and every l ∈ B(B, f(A)), k, k′ ∈ χ(A), A ∈ A, B ∈
B, the equality k ⊗A l = k′ ⊗A l in (χ ⊗ φf )(B) implies that l =
f(a) ◦ l′ and χ(aop)(k) = χ(aop)(k′) for some a : A′ → A in A and
l′ ∈ B(B, f(A′)).

Proposition 12. Let f : A → B be a functor. If f reflects split epimor-
phisms and the functor − ⊗ φf : Â → B̂ preserves equalizers then f is an
effective descent functor.



ON DESCENT THEORY FOR DISTRIBUTORS 9

Proof. Suppose that x⊗A 1f(A) = x′ ⊗A 1f(A) in (ψ ⊗ φf )(f(A)), A ∈ A,

ψ ∈ Â, x, x′ ∈ ψ(A). By Proposition 11, 1f(A) = f(a) ◦ l′ and ψ(aop)(x) =
ψ(aop)(x′) for some a : A′ → A in A and l′ : f(A) → f(A′) in B. Hence
a ◦ a′ = 1A for some a′ : A→ A′ in A. Consequently,

x = ψ(1op
A )(x) = ψ((a′)op ◦ aop)(x) = ψ((a′)op ◦ aop)(x′) = ψ(1op

A )(x′) = x′,

which means that (ηψ)A is injective for every ψ ∈ Â and A ∈ A. By Propo-
sition 9, f is a descent functor and by Lemma 6, f! reflects isomorphisms.
The result now follows from Theorem 7. �

Recall that a functor f : A → B is flat if the functor − ⊗ φf : Â → B̂
preserves finite limits. Similarly we say that a functor f : A → B is pullback
flat (equalizer flat) if the functor −⊗φf : Â → B̂ preserves pullbacks (equal-
izers). Since pullback flatness implies equalizer flatness, by Proposition 12
we have the following implications for f :

flat and reflects split epis =⇒ pullback flat and reflects split epis
=⇒ equalizer flat and reflects split epis =⇒ effective descent functor
=⇒ descent functor =⇒ faithful.

Using the fact that the left Kan extension LA(F ) : Â → Set of a functor
F : A → Set preserves pullbacks if and only if the category of elements of
F is co-pseudofiltered (see [7], p. 212), as in Theorem 6.4 of [2] one can see
that a functor f : A → B is pullback flat if and only if the category B ↓ f is
co-pseudofiltered for every object B ∈ B.

Corollary 13. If f reflects split epimorphisms and the category B ↓ f
is co-pseudofiltered for every object B ∈ B then f is an effective descent
functor.

Corollary 14. Every faithful functor between groupoids is an effective
descent functor.

Proof. Suppose that f : A → B is a faithful functor between groupoids.
If f(a1) ◦ b1 = b2 = f(a2) ◦ b1 in the right hand side of the diagram

f(A1) f(A1)
f(1A1

)
//_____ f(A1) f(A2)

f(a1) //
f(A1) f(A2)

f(a2)
//

B

f(A1)

b1

zzv
v

v
v

v
v

v
B

f(A1)

b1

��

B

f(A2)

b2

$$HHHHHHHHHHHHHH
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then f(a1) = f(a2) and a1 = a2. Hence we can complete the diagram with
dotted arrows. The rest of the proof is illustrated by the diagram

f(A2) Boo b2 ______ B f(A)
b //

f(A1)

f(A2)

::
f(a−1

1 ◦a2)

v
v

v
v

v
v

v
f(A1)

B

OO

b1

f(A1)

f(A)

f(a1)

$$HHHHHHHHHHHHH

f(A2)

f(A2)

f(1A2
)

$$H
H

H
H

H
H

H
B

f(A2)

b2

��

f(A)

f(A2)

::

f(a2)
vvvvvvvvvvvvv

.

�

References

[1] M. Barr and Ch. Wells, Toposes, Triples and Theories, Repr. Theory Appl. Categ. 12

(2005) (electronic).
[2] J. Bénabou, Distributors at Work, 2000; http://www.mathematik.tu-darmstadt.de

/˜streicher/FIBR/DiWo.pdf.gz.
[3] W. Bentz and S. Bulman-Fleming, On equalizer-flat acts, Semigroup Forum 58 (1999),

5–16.
[4] F. Borceux, Handbook of Categorical Algebra. 1. Basic Category Theory, Cambridge

University Press, Cambridge, 1994.
[5] F. Borceux, G. Janelidze, Galois Theories, Cambridge University Press, Cambridge,

2001.
[6] V. Laan, On descent theory for monoid actions, Appl. Categ. Structures 12 (2004),

479–483.
[7] S. Mac Lane, Categories for the Working Mathematician, Springer Verlag, New York,

1971.

University of Tartu, Institute of Mathematics, J. Liivi 2, 50409 Tartu,

Estonia

E-mail address: valdis.laan@ut.ee

University of Tartu, Institute of Estonian and General Linquistics,
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