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INTRODUCTIONFor all algebraic structures, studying their representations is a natural partof the theory of these structures. The same holds for semigroups andmonoids. Among representations of monoids, representations by transfor-mations of sets are probably most important. Such a representation maybe considered as an algebraic structure (with unary operations correspond-ing to the elements of this monoid) which will be later called an act over amonoid, so we can speak about the theory of acts over monoids instead ofthe theory of representations of monoids by transformations of sets. Anymodule over a ring (with identity) is an example of an act over a monoid.There are many di�erent properties of acts that have been investigated.Special emphasis has been on properties having categorical origin, such asprojectivity, injectivity, freeness, cofreeness and so on. These propertiescan be divided, roughly speaking, into two big groups: properties gatheredaround projectivity and properties gathered around injectivity. In this workwe consider only projectivity and related properties.A large number of results about acts over monoids concerns so-calledhomological classi�cation of monoids by properties of acts over them. Thatmeans the consideration of questions like \Which conditions must a monoidsatisfy in order for all acts over it with one property to have another prop-erty?". Before acts over monoids, similar questions were asked for mod-ules over rings. It turned out that the situation for acts is much di�erentfrom the situation for modules. Namely, many so-called atness properties(which are generalizations of projectivity) are the same for modules butessentially di�erent for acts.In this work we try to classify monoids by atness properties of acts.The earliest works in this area belong to Kilp and by now a lot of articleshave been published on this topic. Among atness properties, pullback at-ness (or strong atness, which is the most common term) is the strongest.It was introduced in [32] under the name of weak atness. A right actover a monoid is called pullback at if tensoring by it preserves all pullbackdiagrams in the category of left acts over this monoid. From the proper-ties under consideration pullback atness implies condition (P), atness,weak atness, principal weak atness and torsion freeness. From [2] it fol-lows that, besides pullback atness, also condition (P) can be described interms of tensoring of pullbacks. So we can pose the question: can the otherweaker atness properties be characterized in the same way and are theseproperties the only ones which can be obtained in this way? We want tosee what happens if we require preserving only all pullback diagrams of acertain type or if we do not require preserving but something less.7



We start with a scheme where, by dropping requirements, we obtain aformal structure of properties which an act can or cannot have. Closer ex-amination in section 2 shows which of these properties are actually di�erent.We see that condition (P), atness, weak atness, principal weak atnessand torsion freeness �nd their place in this scheme and, moreover, we seenew properties emerging. We use the terms `weakly pullback at', `weaklyhomoat' and `principally weakly homoat' to denote these properties.In section 3 we try to solve some classi�cation problems. Althoughatness properties do not form a chain with respect to order of decreasingstrength, for homological classi�cation purposes it is natural to choose sucha chain. We have chosen here a chain starting with pullback atness, endingwith torsion freeness and including all `new' properties (and leaving atnessand weak atness aside). Some of the results in section 3 concern only `old'properties (for example we �nd a description of monoids over which alltorsion free right acts are principally weakly at) but most of them involve`new' properties, too. The results obtained are tabulated at the end.Since the conditions on acts or monoids might be quite complicated,we quite often use the standard symbols of mathematical logic hoping thatthis will not cause confusion, but rather help to avoid it.
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1 PRELIMINARIESThroughout this paper let S denote a monoid with an identity element 1:We start with basic de�nitions of the theory of acts over monoids.De�nition 1 A nonempty set A is called a right S-act (or a right act overS) and denoted AS (or simply A if the context permits to drop S) if S actson A unitarily from the right, that is, there exists a mapping A� S ! A;(a; s) 7! as; satisfying the conditions1. (as)t = a(st);2. a1 = afor all a 2 A and all s; t 2 S. Left S-acts SA are de�ned dually.De�nition 2 A nonempty subset B of a right (left) S-act A is called asubact of A if bs 2 B (sb 2 B) for all b 2 B and s 2 S:De�nition 3 An equivalence relation � on a right (left) S-act A is called acongruence on A if a1�a2 implies (a1s)�(a2s) ((sa1)�(sa2)) for all a1; a2 2 Aand s 2 S:De�nition 4 If A and B are right (left) S-acts then a mapping f : A! Bis called a homomorphism of right (left) S-acts iff(as) = f(a)s(f(sa) = sf(a)) for all a 2 A and s 2 S:A nonempty subset K of a monoid S is a right (left) ideal of S, if ks 2 K(sk 2 K) for all s 2 S and k 2 K: A right (left) ideal K of a monoid S iscalled proper, if it is not equal to S. It is called trivial, if K = S or jKj = 1:By a trivial monoid we mean the one-element monoid.Every right (left) ideal K of S is in a natural way a right (left) S-actwhich is a subact of SS (SS).An equivalence relation � on a monoid S is a right (left) congruence onS if x1�x2 implies (x1s)�(x2s) ((sx1)�(sx2)) for all x1; x2; s 2 S: A rightand left congruence on S is called a congruence on S:So congruences of the right S-act SS are exactly right congruences ofthe monoid S:The notion of tensor product plays important role in the study of acts overmonoids. The de�nition of tensor product of acts was �rst given in [12].9



De�nition 5 ([12]) If AS and SB are a right and a left S-act, respectively,the tensor product AS 
 SB of AS and SB (over the monoid S) is thequotient set (A � B)=�; where � is the smallest equivalence relation onA� B that identi�es all pairs (as; b) and (a; sb), a 2 AS ; b 2 SB; s 2 S:The � -class of a pair (a; b) 2 A�B is denoted by a
 b; so for every s 2 Swe have the equality as 
 b = a
 sb:For calculation purposes we shall use the following lemma, which actuallycan be formulated in several di�erent ways (see [4], [20]).Lemma 1.1 ([10]) Let S be a monoid, a; a0 2 AS ; b; b0 2 SB: Thena
 b = a0
 b0 in AS 
 SB if and only if there exist a natural number n andelements a1; : : : ; an�1 2 AS ; b1; : : : ; bn�1 2 SB; s1; : : : ; sn; t1; : : : ; tn�1 2 Ssuch that a = a1s1 s1b = t1b1a1t1 = a2s2 s2b1 = t2b2: : : : : :an�1tn�1 = a0sn snbn�1 = b0:A sequence of equalities as in Lemma 1.1 is called a scheme (or tossing) oflength n over AS and SB joining (a; b) and (a0; b0).The following two lemmas are direct consequences of Lemma 1.1.Lemma 1.2 Let S be a monoid, a; a0 2 AS ; b; b0 2 SB: Then a
b = a0
b0in AS
S(Sb[Sb0) if and only if there exist a natural number n and elementsa1; : : : ; an�1 2 AS ; b1; : : : ; bn�1 2 fb; b0g; s1; : : : ; sn; t1; : : : ; tn�1 2 S suchthat a = a1s1 s1b = t1b1a1t1 = a2s2 s2b1 = t2b2: : : : : :an�1tn�1 = a0sn snbn�1 = b0:Lemma 1.3 ([12]) Let S be a monoid. Then a
 s = a0
 t in AS 
 SS ifand only if as = a0t in AS :Fix a right S-act AS : Let us show that this gives rise to a functor AS 
S �from the category of all left S-acts to the category of sets. For objects SMof the category of left S-acts let AS 
S � be de�ned bySM 7!AS 
 SM10



and for morphisms f :SM ! SN in the category of left S-acts (that is forhomomorphisms of left S-acts) byf 7!idA 
 fwhere idA 
 f : AS 
 SM !AS 
 SNis de�ned by (idA 
 f)(a
m) = a
 f(m)for all a 2 AS and m 2 SM (it follows from Lemma 1.1 that idA 
 f iswell-de�ned). Then(AS 
S �)(idSM ) = idAS 
 idSM = idAS
SM = id(AS
S�)(SM)because(idAS 
 idSM )(a
m) = a
 idSM (m) = a
m = idAS
SM (a
m)for all a 2 AS ; m 2 SM: Take two homomorphisms f :SM ! SN;g:SN ! SQ of left S-acts. Then(idAS 
 gf)(a
m) = a 
 (gf)(m) = a
 g(f(m))= (idAS 
 g)(a
 f(m))= (idAS 
 g)((idAS 
 f)(a
m))= ((idAS 
 g)(idAS 
 f))(a
m)for all a 2 AS ; m 2 SM: This means thatidAS 
 gf = (idAS 
 g)(idAS 
 f);or (AS 
S �)(gf) = (AS 
S �)(g)(AS 
S �)(f):Hence AS 
S � is indeed a covariant functor. This functor is called thefunctor of tensoring by AS :We now give the de�nitions of properties of S-acts related to atnessthat have been under closer examination in many articles on homologicalclassi�cation of monoids.De�nition 6 ([12]) A right S-act AS is called at if the functorAS 
S � preserves all monomorphisms.Thus AS is at if for every monomorphism �:SM ! SN the mappingidA 
 � : AS 
 SM !AS 
 SN is injective, that is a 
 �(m) = a0 
 �(m0)implies a 
m = a0 
 m0 for all a; a0 2 AS ; m;m0 2 SM . The most oftenused (already since [12]) reformulation of the de�nition is the following one.11



Lemma 1.4 A right S-act AS is at if and only if for every left S-actSN , its subact SM and all elements a; a0 2 AS ; m;m0 2 SM; if a
m anda0
m0 are equal in the tensor product AS 
 SN then they are equal alreadyin the tensor product AS 
 SM:De�nition 7 ([15]) A right S-act AS is called (principally) weakly at ifthe functor AS 
S � preserves all monomorphisms from (principal) leftideals of S into S.From de�nitions of weak atness and principal weak atness and Lemma1.3 we get the following criteria for checking weak atness and principalweak atness.Lemma 1.5 A right S-act AS is weakly at if and only if for all a; a0 2 AS ;s; t 2 S; if as = a0t then a
s = a0
t in the tensor product AS
S(Ss [ St):Lemma 1.6 A right S-act AS is principally weakly at if and only if forall a; a0 2 AS ; s; t 2 S; if as = a0s then a
 s = a0 
 s in the tensor productAS 
 S(Ss):It follows from the de�nitions that atness implies weak atness and weakatness implies principal weak atness. As proved in [15], the followingde�nition gives a generalization of principal weak atness.De�nition 8 ([24]) A right S-act AS is called torsion free if ac = a0cimplies a = a0 for all a; a0 2 AS and right cancellable c 2 S.The following de�nitions give some properties which turn out to be strongerthan atness.De�nition 9 A right S-act AS is called free if there exists a subsetU � AS such that every element a 2 AS can be uniquely presented in theform a = us; u 2 U; s 2 S, i.e., if a = u1s1 = u2s2, u1; u2 2 U; s1; s2 2 Sthen u1 = u2 and s1 = s2. The subset U is called a basis of AS .Projectivity in the category of right acts is de�ned as in every category.De�nition 10 A right S-act AS is called projective if for every epimor-phism � : PS ! QS and every homomorphism f : AS ! QS there exists ahomomorphism g : AS ! PS such that �g = f:From De�nition 9 the following description of freeness follows (note that Fdenotes the disjoint union). 12



Theorem 1.7 A right S-act AS is free if and only if AS �= Fi2I Ai, whereAi �= SS for every i 2 I.For projectivity the following description is known.Theorem 1.8 ([22]) A right S-act AS is projective if and only ifAS �= Fi2I Ai, where for every i 2 I there exists an idempotent ei 2 S suchthat Ai �= (eiS)S.From Theorems 1.7 and 1.8 it immediately follows that every free S-act isprojective.Pullback diagrams in the category of left S-acts (or sets) are de�ned asin every category.De�nition 11 A diagram SMSQSN ?f-gSP -? p1p2where SP; SM;S N and SQ are left S-acts and f; g; p1 and p2 are homomor-phisms of left S-acts, is called a pullback diagram, or a pullback square, iffp1 = gp2 and for every left S-act SP ; all homomorphisms p1 : SP ! SMand p2 : SP ! SN such that fp1 = gp2 there exists a unique homomor-phism h:SP ! SP such that p1h = p1 and p2h = p2:Every nonempty set can be considered as a left act over a trivial monoid.Homomorphisms of such left acts are just mappings of sets and so with theprevious de�nition, pullback diagrams in the category of sets are de�ned,too.We omit the de�nition of equalizer diagram since we shall not use it inwhat follows. Interested readers can see [30], for example.De�nition 12 ([32]) A right S-act AS is called strongly at if the functorAS 
S � preserves pullbacks and equalizers.The meaning of the word `preserves' will be explained in subsection 2.1.De�nition 13 ([30]) A right S-act AS is called pullback at if the functorAS 
S � preserves pullbacks. 13



De�nition 14 ([30]) A right S-actAS is called equalizer at if the functorAS 
S � preserves equalizers.De�nition 15 ([32]) A right S-act AS satis�es condition (P) if(8a; a0 2 AS)(8s; s0 2 S)(as = a0s0 )(9a00 2 AS)(9u; v 2 S)(a = a00u ^ a0 = a00v ^ us = vs0)):De�nition 16 ([32]) A right S-act AS satis�es condition (E) if(8a 2 AS)(8s; s0 2 S)(as = as0 )(9a0 2 AS)(9u 2 S)(a = a0u ^ us = us0)):Originally, acts for which the functor of tensoring preserves equalizers andpullbacks, were called weakly at in [32] and it was proved there that thefunctor of tensoring by a right S-act preserves equalizers and pullbacks ifand only if this act satis�es conditions (P) and (E). Afterwards such actshave been called strongly at starting from [13]. In [13] it was also provedthat strong atness implies atness. It turned out that atness is essentiallyweaker than strong atness, namely it was proved in [19] that all at rightS-acts are strongly at if and only if S has only one element. In [30] theinterval between atness and strong atness was investigated in detail. Inthis paper pullback at and equalizer at acts (as well as acts satisfyingcondition (P) or (E)) were �rst considered on their own and it was shownthat condition (P) implies atness. This made condition (P) a suitableintermediate property between atness and strong atness for homologicalclassi�cation purposes. However, the question whether pullback atnessimplies strong atness remained open. In [2] it was proved that an act ispullback at if and only if it is strongly at. This means that pullbackatness implies equalizer atness. For our purposes we shall use the term`pullback at' as a synonym of `strongly at'. So for the pullback atnesswe have the following description.Theorem 1.9 ([32], [2]) A right S-act is pullback at if and only if itsatis�es conditions (P) and (E).It was shown in [32] that projectivity implies pullback atness. So we havethe following implications:freeness ) projectivity) pullback atness ) condition (P) )) atness ) weak atness )) principal weak atness ) torsion freeness.There exist examples in the literature showing that all these implicationsare strict. 14



Every cyclic right S-act (i.e. an act which is generated by a single element)is isomorphic to a factor act S=� where � is a right congruence on S: A�-class of an element s 2 S will be denoted by [s]� or simply [s]:For cyclic acts we shall need the following proposition.Proposition 1.10 ([1], [7], [23]) Let � be a right congruence on a monoidS. A cyclic right S-act S=�� satis�es condition (P) if and only if(8s; t 2 S)(s�t) (9u; v 2 S)(us = vt ^ u�1 ^ v�1));� is pullback at (satis�es condition (E)) if and only if(8s; t 2 S)(s�t) (9u 2 S)(us = ut ^ u�1));� is torsion free if and only if(8s; t; c 2 S)(sc�tc^ c is right cancellable ) s�t):If K � S is a right ideal of S then the binary relation �K on S; de�ned bys�Kt() ((s = t) _ (s; t 2 K));s; t 2 S; is a right congruence on S. The factor act S=�K will be denotedS=K and it is called a right Rees factor act of S by K:For a monoid S we can consider any one-element set � = f�g as a rightS-act �S by de�ning �s = �for all s 2 S. Since all such one-element right S-acts are isomorphic, we canspeak about the one-element right S-act �S . From the previous paragraphwe have S=S �= �S :For right Rees factor acts and �S the descriptions of atness propertiestake simpler forms. Before formulating them we need some more de�nitions.De�nition 17 ([17]) A monoid S is called left (right) collapsible if forevery s; s0 2 S there exists z 2 S such that zs = zs0 (sz = s0z):De�nition 18 A monoid S is called right (left) reversible if for everys; s0 2 S there exist u; v 2 S such that us = vs0 (su = s0v):15



De�nition 19 A right ideal K of a monoid S is called left stabilizing if forevery k 2 K there exists l 2 K such that lk = k:Left stabilizing right ideals came up in [15], the name was �rst given in [3]Proposition 1.11 Let K be a right ideal of a monoid S. A right Reesfactor act S=K� is (weakly) at if and only if S is right reversible and K is left stabi-lizing [15];� is principally weakly at if and only if K is left stabilizing [15];� is torsion free if and only if sc 2 K implies s 2 K for s; c 2 S; c rightcancellable [20];� satis�es condition (P) if and only if jKj = 1 or K = S and S is rightreversible [15];� is pullback at (satis�es condition (E)) if and only if jKj = 1 orK = S and S is left collapsible [20];� is projective if and only if jKj = 1 or K = S and S has a left zero[20];� is free if and only if jKj = 1 [20].Corollary 1.12 The one-element right S-act �S� is (weakly) at if and only if S is right reversible;� is principally weakly at;� is torsion free;� satis�es condition (P) if and only if S is right reversible;� is pullback at (satis�es condition (E)) if and only if S is left col-lapsible;� is projective if and only if S has a left zero;� is free if and only if S = f1g:The following lemmas will be used when working with factor acts.16



Lemma 1.13 ([29]) Let AS be a right S-act, H � AS �AS and �(H) thesmallest congruence on AS ; which contains H. Then (a; a0) 2 �(H);a; a0 2 AS ; if and only if either a = a0 or there exist a natural number nand elements y1; : : : ; yn 2 S, b1; : : : ; bn; d1; : : : ; dn 2 AS such thata = b1y1 d2y2 = b3y3d1y1 = b2y2 : : : dnyn = a0;where either (bi; di) 2 H or (di; bi) 2 H for every i 2 f1; : : : ; ng.We shall write simply �(b; d) instead of �(f(b; d)g): As special cases of theprevious lemma we get the following lemmas.Lemma 1.14 Let AS be a right S-act, b; d 2 AS and �(b; d) the smallestcongruence on AS ; which contains the pair (b; d). Then (a; a0) 2 �(b; d);a; a0 2 AS ; if and only if either a = a0 or there exist a natural number nand elements y1; : : : ; yn 2 S, b1; : : : ; bn; d1; : : : ; dn 2 AS such thata = b1y1 d2y2 = b3y3d1y1 = b2y2 : : : dnyn = a0;where fbi; dig = fb; dg for every i 2 f1; : : : ; ng.Lemma 1.15 Let S be a monoid, s; t 2 S and �(s; t) the smallest rightcongruence on S; which contains the pair (s; t). Then (x; y) 2 �(s; t);x; y 2 S; if and only if either x = y or there exist a natural number n andelements y1; : : : ; yn; s1; : : : ; sn; t1; : : : ; tn 2 S such thatx = s1y1 t2y2 = s3y3t1y1 = s2y2 : : : tnyn = y;where fsi; tig = fs; tg for every i 2 f1; : : : ; ng.Let S be a monoid and let SS1 and SS2 be two left S-acts, which areisomorphic to the left S-act SS: Then there exist left S-act isomorphisms�1 : SS ! SS1 and �2 : SS ! SS2: For the images of an element s of S weshall write �1(s) = s1 and �2(s) = s2: Thus, for instance, 11 and 12 are theisomorphic copies of the identity element 1 of S in S1 and S2; respectively,and using that �1 and �2 are homomorphisms of left S-acts we have(st)i = sti;s; t 2 S, i 2 f1; 2g. In what follows we shall also make use of the left S-actS(S1FS2) which is just the disjoint union of S1 and S2 on which S acts inthe natural way from the left, that isxs1 = (xs)1xs2 = (xs)217



for all x; s 2 S.If S is a monoid and t 2 S then �t : S ! S (�t : S ! S) will denotethe left (right) translation by t; i.e.�t(s) = ts(�t(s) = st) for every s 2 S: Then ker�t (ker�t) is a right (left) congruenceon S:Let T be a semigroup. Taking S = T t f1g the disjoint union of T andf1g and de�ning 11 = 1 and t1 = 1t = tfor every t 2 T we obtain a monoid S with the identity element 1: We saythat the monoid S is obtained from T by (external) adjoining of identity.This monoid is denoted by T 1:Let T be a monoid. Taking S = T t f0g and de�ningt0 = 0t = 00 = 0for every t 2 T we get a monoid S with a zero element 0: We say that themonoid S is obtained from T by (external) adjoining of zero and denote itby T 0.
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2 TENSORING OF PULLBACKS ANDFLATNESS PROPERTIES2.1 A new look at the tensoring of pullbacksConsider a diagram SMSQSN ?f-gSP -? p1p2 (P1)in the category of left S-acts.Lemma 2.1 ([30], [31]) If (P1) is a pullback diagram then SP is iso-morphic to the left S-act f(m;n) 2 SM � SN j f(m) = g(n)g wheres(m;n) = (sm; sn) for all s 2 S; m 2 SM and n 2 SN:So if (P1) is a pullback of homomorphisms f and g then SP is determinedup to isomorphism and we may assume that it isSP = f(m;n) 2 SM � SN j f(m) = g(n)g;and p1; p2 are the restrictions of the projections, that is, p1((m;n)) = mand p2((m;n)) = n for every (m;n) 2 SP . With this convention let usdenote such a pullback diagram (P1) in the category of left S-acts byP (M;N; f; g; Q):In the same way one can construct the pullback of two mappings in thecategory of sets, because nonempty sets can be considered as left acts overa trivial monoid.Tensoring the pullback diagram P (M;N; f; g; Q) by any right S-act ASone gets the commutative diagram AS 
 SMAS 
 SQAS 
 SN ?idA 
 f-idA 
 gAS 
 SP -? idA 
 p1idA 
 p2in the category of sets. 19



For the pullback of mappings idA 
 f and idA 
 g in the category ofsets we may take by our conventionP 0 = f(a
m; a0 
 n) 2 (AS 
 SM)� (AS 
 SN) j a
 f(m) = a0 
 g(n)gwith p10 and p20 the restrictions of the projections. (Note that the existenceof the pullback diagram (P1) implies the existence of the pullback diagramof idA 
 f and idA 
 g.)Now it follows from the de�nition of pullbacks that there exists a uniquemapping ' : AS 
 SP �! P 0 such that the diagramAS 
 SMAS 
 SQAS 
 SN ?idA 
 f-idA 
 g-?P 0R qUAS 
 SP ' p01p02idA 
 p2 idA 
 p1 (P2)is commutative. We shall call this mapping the mapping ' correspondingto the pullback diagram P (M;N; f; g; Q):It was stated in [2] that the mapping ' in Diagram (P2) is given by'(a
 (m;n)) = (a
m; a
 n)for all a 2 AS and (m;n) 2 SP .Note that surjectivity of ' means that(8a; a0 2 AS)(8m 2 SM)(8n 2 SN)[a
 f(m) = a0 
 g(n))(9a00 2 AS)(9m0 2 SM)(9n0 2 SN)(f(m0) = g(n0) ^ a
m = a00 
m0 ^ a0 
 n = a00 
 n0)]and injectivity of ' means that(8a; a0 2 AS)(8m;m0 2 SM)(8n; n0 2 SN)[f(m) = g(n) ^ f(m0) = g(n0) ^ a
m = a0 
m0 ^ a
 n = a0 
 n0 )a 
 (m;n) = a0 
 (m0; n0) in AS 
 SP ]:In what follows, if we want to use surjectivity or injectivity of ' correspond-ing to some pullback diagram, we always use these statements, withoutspecially emphasizing it. 20



By the original de�nition, pullback atness of AS means that the corre-sponding ' is surjective and injective for every pullback diagramP (M;N; f; g; Q) in the category of left S-acts. It was shown in [2] thatthis holds if and only if AS satis�es conditions (E) and (P). Moreover, in[2] it was proved that an act AS satis�es condition (P) if and only if thecorresponding ' is surjective for every pullback diagram P (M;N; f; g; Q):So we notice that if we drop the requirement of injectivity of ' in thede�nition of pullback atness, we obtain condition (P). On the other handwe know that condition (P) implies atness. So the following questionsarise: Can we get atness by weakening the requirements that ' has toful�ll in order for AS to satisfy condition (P)? What happens if we demandsurjectivity of ' not for all pullback diagrams but only for some speci�ckind of them? And so on.It turns out that it is indeed possible to give for atness (and its general-izations) a description that uses surjectivity of ' for some special pullbacks.Of course, there are several ways how one can weaken requirements on 'to get possible generalizations of pullback atness. What we have chosenas our aim here is to generalize pullback atness so that the well-knownatness properties result and to �nd out whether there exist any new prop-erties that can be obtained by making steps towards generalization similarto those which we need in order to get condition (P) from pullback atness,atness from condition (P), weak atness from atness and so on. Havingthis in mind, it seems reasonable to study what happens if we considerpullbacks of two equal homomorphisms, if this homomorphism is actu-ally a monomorphism or if we restrict ourselves only to homomorphisms(monomorphisms) from (principal) left ideals of S to S:What results is thefollowing rather formal collection of properties that can be organized intothe following scheme.
21



' surj.P (S; S; �; �; S)' surj.P (Ss; Ss; �; �; S)' surj.P (I; I; �; �; S)' surj.P (M;M; �; �; Q) ' surj.P (S; S; f; f; S)' surj.P (Ss; Ss; f; f; S)' surj.P (I; I; f; f; S)' surj.P (M;M; f; f;Q) ' surj.P (S; S; f; g; S)' surj.P (Ss; Ss; f; g; S)' surj.P (I; I; f; g; S)' surj.P (M;M; f; g;Q)' surj.P (M;N; f; g;Q) ' surj. and inj.P (S; S; f; g; S)' surj. and inj.P (Ss; Ss; f; g; S)' surj. and inj.P (I; I; f; g; S)' surj. and inj.P (M;M; f; g;Q)' surj. and inj.P (M;N; f; g;Q)
Scheme 1Here I (Ss) stands for a (principal) left ideal of S, and � for a monomor-phism of left S-acts. Every rectangle stands for a class of right S-actsthat is de�ned by the property written into it in short but, we hope,understandably. For instance, a rectangle with the text \' surj. andinj. P (Ss; Ss; f; g; S)" denotes the class of all right S-acts AS such thatthe corresponding ' is surjective and injective for every pullback diagramP (Ss; Ss; f; g; S); s 2 S: A line between two rectangles indicates that theclass of right S-acts corresponding to the rectangle at the upper end of theline is contained in the class corresponding to the rectangle at the lowerend.A priori we do not know whether these classes coincide. The rest of thissection is devoted to determing which of these classes are actually di�erent.We try to give descriptions of the corresponding properties, which do notuse the notion of pullback. For new properties (those which do not appearin section 1) we also give conditions under which cyclic acts, Rees factoracts, or one-element act have this property.22



2.2 On torsion free actsFirst we see that the lowest cell in the leftmost column of Scheme 1 isactually the class of torsion free right S-acts.Proposition 2.2 A right S-act AS is torsion free if and only if the cor-responding ' is surjective for every pullback diagram P (S; S; �; �; S); where� : SS ! SS is a monomorphism of left S-acts.Proof. Necessity. Let AS be torsion free. Suppose thata 
 �(s) = a0 
 �(t) for some s; t 2 S and a monomorphism � : SS ! SS ofleft S-acts. Since � is a homomorphism of left S-acts, a
 s�(1) = a0
 t�(1)in AS 
 SS:By Lemma 1.3 this means that as�(1) = a0t�(1) in AS : Fromthe injectivity of � it follows that the element �(1) 2 S is right cancellable.Hence torsion freeness of AS implies that as = a0t: Denote a00 = as = a0t:Then we have a
s = a00
1 and a0
 t = a00
1 in AS
SS and �(1) = �(1).Thus ' is surjective for the pullback diagram P (S; S; �; �; S):Su�ciency. Suppose that ac = a0c for some a; a0 2 AS and rightcancellable c 2 S: Take a mapping � = �c : SS ! SS. Since c is rightcancellable, � is a monomorphism of left S-acts. Now a�(1) = a0�(1); whichmeans that a
 �(1) = a0 
 �(1) in AS 
 SS by Lemma 1.3. Surjectivity of' for the diagram P (S; S; �; �; S) implies that there exist a00 2 AS ; s0; t0 2 Ssuch that �(s0) = �(t0); a 
 1 = a00 
 s0 and a0 
 1 = a00 
 t0 in AS 
 SS:Injectivity of � implies s0 = t0 and Lemma 1.3 implies a = a00s0 and a0 = a00t0:Thus a = a0 and AS is torsion free.2.3 On principally weakly at actsIt turns out that the third cell from the top in the leftmost column ofScheme 1 is the class of principally weakly at right S-acts.Proposition 2.3 A right S-act AS is principally weakly at if and only ifthe corresponding ' is surjective for every pullback diagram P (Ss; Ss; �; �; S);where s 2 S and � : S(Ss)! SS is a monomorphism of left S-acts.Proof. Necessity. Let AS be principally weakly at. Suppose thata
 �(us) = a0
 �(vs) for some a; a0 2 AS ; s; u; v 2 S and a monomorphism� : S(Ss) ! SS of left S-acts. Principal weak atness of S implies thata 
 us = a0 
 vs in AS 
 S(Ss): Thus ' is surjective for the pullbackdiagram P (Ss; Ss; �; �; S); because a
 us = a0
 vs and a0
 vs = a0
 vs inAS 
 S(Ss) and �(vs) = �(vs):Su�ciency. Suppose that a
 �(us) = a0 
 �(vs) in AS 
 SS for somea; a0 2 AS ; u; v; s 2 S and a monomorphism � : S(Ss) ! SS: Surjectivityof ' for the diagram P (Ss; Ss; �; �; S) implies that there exist a00 2 AS ;23



u0; v0 2 Ss such that �(u0) = �(v0); a 
 us = a00 
 u0 in AS 
 S(Ss) anda0 
 vs = a00 
 v0 in AS 
 S(Ss): Injectivity of � implies u0 = v0: Thusa
 us = a0 
 vs in AS 
 S(Ss) and AS is principally weakly at.2.4 On weakly at actsHere we show that the second cell from the top in the leftmost column ofScheme 1 is the class of weakly at right S-acts.Proposition 2.4 A right S-act AS is weakly at if and only if the corre-sponding ' is surjective for every pullback diagram P (I; I; �; �; S); where Iis a left ideal of S and � : SI ! SS is a monomorphism of left S-acts.Proof. Necessity. Let AS be weakly at. Suppose thata 
 �(s) = a0 
 �(t) for some a; a0 2 AS ; s; t 2 I and a monomorphism� : SI ! SS of left S-acts. Weak atness of AS implies that a 
 s = a0 
 tin AS 
 SI: Thus ' is surjective for the pullback diagram P (I; I; �; �; S);because a
 s = a0 
 t and a0 
 t = a0 
 t in AS 
 SI and �(t) = �(t):Su�ciency. Suppose that a
 �(s) = a0
 �(t) in AS
SS for a left idealI; a; a0 2 AS ; s; t 2 I and a monomorphism � : SI ! SS: Surjectivity of 'for the diagram P (I; I; �; �; S) implies that there exist a00 2 AS ; u0; v0 2 Isuch that �(u0) = �(v0); a 
 s = a00 
 u0 and a0 
 t = a00 
 v0 in AS 
 SI:Injectivity of � implies u0 = v0: Thus a 
 s = a0 
 t in AS 
 SI and AS isweakly at. 2.5 On at actsThe upper cell in the leftmost column of Scheme 1 is the class of all atright S-acts.Proposition 2.5 A right S-act AS is at if and only if the corresponding' is surjective for every pullback diagram P (M;M; �; �; Q); where� : SM ! SQ is a monomorphism of left S-acts.Proof. Necessity. Let AS be at. Suppose that a 
 �(m) = a0 
 �(n)in AS 
 SQ for some a; a0 2 AS ; m; n 2 SM and a monomorphism� : SM ! SQ of left S-acts. Flatness of AS implies that a
m = a0 
 n inAS 
 SM: Thus ' is surjective for the pullback diagram P (M;M; �; �; Q);because a
m = a0 
 n and a0 
 n = a0 
 n in AS 
 SM and �(n) = �(n):Su�ciency. Suppose that a 
 �(m) = a0 
 �(n) in AS 
 SQ fora; a0 2 AS ; m; n 2 SM and a monomorphism � : SM ! SQ: Surjectivityof ' for the diagram P (M;M; �; �; Q) implies that there exist a00 2 AS ;m0; n0 2M such that �(m0) = �(n0); a
m = a00
m0 and a0
n = a00
n0 inAS 
SM: Injectivity of � implies m0 = n0: Thus a
m = a0
n in AS
SMand AS is at. 24



2.6 Principally weakly homoat actsHere we show that the two lowest cells in the second column of Scheme 1de�ne the same the class of right S-acts. We �nd an alternative descrip-tion of a right S-act (cyclic right S-act, right Rees factor act) having thecorresponding property and show that this class is a proper subclass of theclass of all principally weakly at right S-acts.Proposition 2.6 Let AS be a right S-act. The following assertions areequivalent:1. The corresponding ' is surjective for every pullback diagramP (Ss; Ss; f; f; S); where s 2 S:2. The corresponding ' is surjective for every pullback diagramP (S; S; f; f; S):3. (8a; a0 2 AS)(8t 2 S)(at = a0t)(9a00 2 AS)(9u; v 2 S)(ut = vt ^ a = a00u ^ a0 = a00v)):Proof. 1:) 2: is clear.2:) 3: Suppose that the corresponding ' is surjective for every pullbackdiagram P (S; S; f; f; S): Let at = a0t; a; a0 2 AS ; t 2 S: Consider thehomomorphism �t : SS ! SS: Then �t(1) = t and a�t(1) = a0�t(1): ByLemma 1.3 we have a
 �t(1) = a0
 �t(1) in AS 
 SS: Since ' is surjectivefor the pullback diagram P (S; S; �t; �t; S); there exist a00 2 AS ; u; v 2 Ssuch that �t(u) = �t(v), a 
 1 = a00 
 u and a0 
 1 = a00 
 v in AS 
 SS:Using the de�nition of the homomorphism �t and Lemma 1.3 we obtainut = vt; a = a00u and a0 = a00v:3:) 1: Let a
 f(xs) = a0
 f(ys) in AS 
 SS for a; a0 2 AS ; x; y; s 2 Sand a homomorphism f : S(Ss) ! SS. Let t 2 S be an element such thatf(s) = t: Then we have a
 xt = a0 
 yt in AS 
 SS which by Lemma 1.3means that axt = a0yt: By the assumption there exist a00 2 AS ; u; v 2 Ssuch that ut = vt; ax = a00u and a0y = a00v: Thenf(us) = uf(s) = ut = vt = vf(s) = f(vs);a 
 xs = ax
 s = a00u
 s = a00 
 usand, analogously, a0 
 ys = a00 
 vsin AS 
 S(Ss): Thus we have shown that ' is surjective for the pullbackdiagram P (Ss; Ss; f; f; S): 25



De�nition 20 We say that a right S-act AS is principally weakly ho-moat, if the corresponding ' is surjective for every pullback diagramP (Ss; Ss; f; f; S); s 2 S:Remark 1 The pre�x `homo' comes from the word `homomorphism' andit indicates that we consider all homomorphisms instead of all monomor-phisms (as it was in the case of principal weak atness).By Proposition 2.3 and Scheme 1 it is clear that principal weak homoatnessimplies principal weak atness.Lemma 2.7 Let � be a right congruence on a monoid S: The cyclic rightS-act S=� is principally weakly homoat if and only if(8x; y; t 2 S)((xt)�(yt)) (9u; v 2 S)(ut = vt ^ x�u ^ y�v)):Proof. Necessity. Let S=� be principally weakly homoat and let(xt)�(yt) for some x; y; t 2 S: Then we have [x]�t = [y]�t in S=�: By Propo-sition 2.6 there exist u0; v0; z 2 S such that u0t = v0t; [x]� = [z]�u0 and[y]� = [z]�v0: Denoting u = zu0 and v = zv0 we have ut = vt; x�u and y�v:Su�ciency. Let [x]�t = [y]�t for some x; y; t 2 S: Then (xt)�(yt) andapplying the assumption we get u; v 2 S such that ut = vt; x�u and y�v:Hence [x]� = [1]�u and [y]� = [1]�v: Thus S=� is principally weakly homoatby Proposition 2.6.De�nition 21 We say that a right ideal K of a monoid S is left annihi-lating if (8t 2 S)(8x; y 2 S nK)(xt; yt 2 K ) xt = yt):Observe that if K is a proper left annihilating right ideal then xt 2 Kimplies xt = t for every t 2 K and every x 2 S nK:Lemma 2.8 Let K be a right ideal of a monoid S: The right Rees factoract S=K is principally weakly homoat if and only if K is left stabilizingand left annihilating.Proof. Necessity. Let S=K be principally weakly homoat. Then it isprincipally weakly at and hence K is left stabilizing by Proposition 1.11.Suppose that xt; yt 2 K for some t 2 S and x; y 2 S nK: Then (xt)�K(yt):By Lemma 2.7 there exist u; v 2 S such that ut = vt; x�Ku and y�Kv: Nowx; y 62 K yields x = u and y = v by the de�nition of �K: Hence xt = yt andso K is a left annihilating right ideal.Su�ciency. Let K be a left stabilizing and left annihilating right idealof S: We use Lemma 2.7 to check that S=K is principally weakly homoat.26



Let (xt)�K(yt) for some x; y; t 2 S: If xt = yt then we can take u = x andv = y: So we may assume that xt; yt 2 K:We have the following four casesto consider.a) x; y 2 K: Then we can take u = v = x:b) x 2 K; y 62 K: Since K is left stabilizing, we can �nd for yt 2 K anelement z 2 K such that zyt = yt: So we can take u = zy and v = y:c) x 62 K; y 2 K: This is analogous to the previous case.d) x; y 62 K: Since K is a left annihilating right ideal, we have xt = yt;so u = x and v = y do the job.Corollary 2.9 The one-element right S-act �S is principally weakly ho-moat.Proof. Recall that this S-act is isomorphic to the Rees factor act S=S:Clearly S is both left stabilizing and left annihilating right ideal. Hencethis Rees factor act is principally weakly homoat by Lemma 2.8.It turns out that principal weak atness and principal weak homoatnessare di�erent notions.Example 1 (Flatness does not imply principal weak homoatness.) LetS = f1; e; f; 0g be a semilattice, where ef = 0: Consider a right idealK = eS = fe; 0g of S: Since e and 0 are idempotents, the Rees factor actS=K is principally weakly at by Proposition 1.11 (and even at, because Sis commutative). On the other hand, it is not principally weakly homoat.Indeed, 1; f 2 S nK; 1e; fe 2 K; but 1e 6= fe; so K is not left annihilating.2.7 Weakly homoat actsHere we show that the second cell from the top in the second column ofScheme 1 is a proper subclass of the class of principally weakly homoatacts and the class of weakly at acts. We �nd an alternative descriptionof a right S-act (cyclic right S-act, right Rees factor act) having the corre-sponding property.Lemma 2.10 Let AS be a right S-act. The corresponding ' is surjectivefor every pullback diagram P (I; I; f; f; S); where I is a left ideal of S, if andonly if for all elements s; t 2 S, all homomorphisms f : S(Ss[St)! SS; alla; a0 2 AS ; if af(s) = a0f(t) then there exist a00 2 AS ; u; v 2 S; s0; t0 2 fs; tgsuch that f(us0) = f(vt0), a 
 s = a00 
 us0 and a0 
 t = a00 
 vt0 inAS 
 S(Ss[ St): 27



Proof. Necessity. Suppose that ' is surjective for every pullback dia-gram P (I; I; f; f; S): Let f : S(Ss [ St) ! SS be a homomorphism of leftS-acts, s; t 2 S. Suppose that af(s) = a0f(t) for some a; a0 2 AS : Thismeans that a 
 f(s) = a0 
 f(t) in AS 
 SS by Lemma 1.3: By surjectiv-ity of ' for the diagram P (Ss [ St; Ss [ St; f; f; S) there exist a00 2 AS ;u; v 2 S; s0; t0 2 fs; tg such that f(us0) = f(vt0), a 
 s = a00 
 us0 anda0 
 t = a00 
 vt0 in AS 
 S(Ss[ St):Su�ciency. Suppose that the assumption holds. Consider a homo-morphism f : SI ! SS: Let a 
 f(i) = a0 
 f(j) in AS 
 SS for somea; a0 2 AS ; i; j 2 I: Then af(i) = a0f(j) by Lemma 1.3. Set J = Si[Sj � Iand h = f jJ : S(Si[ Sj)! SS: Then ah(i) = a0h(j) and by the assumptionthere exist a00 2 AS ; u; v 2 S; i0; j 0 2 fi; jg such that h(ui0) = h(vj 0),a
 i = a00 
 ui0 and a0 
 j = a00 
 vj 0 in AS 
 SJ: Now clearly ui0; vj 0 2 J;f(ui0) = h(ui0) = h(vj 0) = f(vj0);and J � I implies that a
i = a00
ui0 and a0
j = a00
vj0 in AS
SI: Thusthe corresponding ' is surjective for the pullback diagram P (I; I; f; f; S):De�nition 22 We say that a right S-act AS is weakly homoat, if thecorresponding ' is surjective for every pullback diagram P (I; I; f; f; S);where I is a left ideal of S:By the de�nition weak homoatness implies principal weak homoatnessand by Proposition 2.4 weak homoatness implies weak atness.The next lemma gives one more description of weak homoatness. Althoughits formulation is quite cumbersome its advantage, comparing with Lemma2.10, is that the lengths of tossings involved do not exceed 3.Lemma 2.11 A right S-act AS is weakly homoat if and only if for allelements s; t 2 S, all homomorphisms f : S(Ss [ St)! SS; all a; a0 2 AS ;if af(s) = a0f(t) then there exist a00; a1; a2 2 AS ; u; v; p1; p2; q1; q2 2 S suchthat either f(us) = f(vt) anda = a1p1a1q1 = a00u p1s = q1sa0 = a2p2a2q2 = a00v p2t = q2t;28



or f(us) = f(vs) and a0 = a1p1a1q1 = a2p2 p1t = q1ta2q2 = a00v p2t = q2sa = a00u;or f(ut) = f(vt) and a = a1p1a1q1 = a2p2 p1s = q1sa2q2 = a00u p2s = q2ta0 = a00v:Proof. Necessity. Let af(s) = a0f(t) for s; t 2 S, a; a0 2 AS and ahomomorphism f : S(Ss[ St)! SS: By Lemma 2.10 there exist a00 2 AS ;u; v 2 S; s0; t0 2 fs; tg such that f(us0) = f(vt0), a
 s = a00 
 us0 anda0 
 t = a00 
 vt0 in AS 
 S(Ss [ St): Consequently a 
 s = a00u 
 s0 anda0 
 t = a00v 
 t0 in AS 
 S(Ss [ St): By Lemma 1.2 there exist naturalnumbers n and m and elements a1; : : : ; an�1; a01; : : : ; a0m�1 2 AS ;z1; : : : ; zn�1; z01; : : : ; z0m�1 2 fs; tg; p1; : : : ; pn; q1; : : : ; qn�1; p01; : : : ; p0m;q01; : : : ; q0m�1 2 S such thata = a1p1 p1s = q1z1a1q1 = a2p2 p2z1 = q2z2: : : : : :ak�1qk�1 = akpk pkzk�1 = qkzkakqk = ak+1pk+1 pk+1zk = qk+1zk+1: : : : : :an�2qn�2 = an�1pn�1 pn�1zn�2 = qn�1zn�1an�1qn�1 = a00upn pnzn�1 = s0and a0 = a01p01 p01t = q01z01a01q01 = a02p02 p02z01 = q02z02: : : : : :a0l�1q0l�1 = a0lp0l p0lz0l�1 = q0lz0la0lq0l = a0l+1p0l+1 p0l+1z0l = q0l+1z0l+1: : : : : :a0m�2q0m�2 = a0m�1p0m�1 p0m�1z0m�2 = q0m�1z0m�1a0m�1q0m�1 = a00vp0m p0mz0m�1 = t0:Denote z0 = s; z00 = t; zn = s0 and z0m = t0: Consider the following threecases. 29



a) s0 = t: Then there exists k 2 f1; : : : ; ng such that zk�1 = s andzk = zk+1 = : : : = zn = s0 = t. Consequentlyakqkf(t) = ak+1pk+1f(t) = ak+1f(pk+1zk) = ak+1f(qk+1zk+1)= ak+1qk+1f(zk+1) = ak+2pk+2f(zk+1) = : : := an�1pn�1f(zn�2) = an�1f(pn�1zn�2) = an�1f(qn�1zn�1)= an�1qn�1f(zn�1) = a00upnf(zn�1) = a00f(upnzn�1)= a00f(us0) = a00f(vt0) = a00f(vp0mz0m�1) = a00vp0mf(z0m�1)= a0m�1q0m�1f(z0m�1) = a0m�1f(q0m�1z0m�1)= a0m�1f(p0m�1z0m�2) = a0m�1p0m�1f(z0m�2) = : : := a01p01f(t)= a0f(t):We know that weak homoatness implies principal weak homoatness.Hence the equality akqkf(t) = a0f(t) implies by Proposition 2.6 that thereexist d1 2 AS and x1; x2 2 S such that akqk = d1x1; a0 = d1x2 andx1f(t) = x2f(t): Moreover,as = a1p1s = a1q1z1 = a2p2z1 = : : := akpkzk�1 = akpksand so the equality as = akpks implies the existence of d2 2 AS andy1; y2 2 S such that a = d2y1; akpk = d2y2 and y1s = y2s: So we havef(x1t) = f(x2t) and a = d2y1d2y2 = akpk y1s = y2sakqk = d1x1 pks = qkta0 = d1x2:b) t0 = s: Then there exists l 2 f1; : : : ; mg such that z0l�1 = t andz0l = z0l+1 = : : : = z0m = t0 = s: Discussing as in the case a) we get the `dual'result.c) s0 = s and t0 = t: Then as = a00us, a0t = a00vt and f(us) = f(vt):Applying Proposition 2.6 we get a1; a2 2 AS ; p1; p2; q1; q2 2 S such thata = a1p1a1q1 = a00u p1s = q1sa0 = a2p2a2q2 = a00v p2t = q2t;Su�ciency. We use Lemma 2.10 for proving weak homoatness ofAS : Suppose that af(s) = a0f(t) for some a; a0 2 AS ; s; t 2 S and ahomomorphism f : S(Ss [ St) ! SS: By assumption there exist elements30



a00; a1; a2 2 AS ; u; v; p1; p2; q1; q2 2 S such that one of the three possibilitiesholds.If f(us) = f(vt) and a = a1p1a1q1 = a00u p1s = q1sa0 = a2p2a2q2 = a00v p2t = q2t;thena
 s = a1p1 
 s = a1 
 p1s = a1 
 q1s = a1q1 
 s = a00u
 s = a00 
 usand, similarly, a0 
 t = a00 
 vtin AS 
 S(Ss[ St):If f(us) = f(vs) and a0 = a1p1a1q1 = a2p2 p1t = q1ta2q2 = a00v p2t = q2sa = a00u;then a
 s = a00u
 s = a00 
 usanda0 
 t = a1p1 
 t = a1 
 p1t = a1 
 q1t = a1q1 
 t = a2p2 
 t = a2 
 p2t= a2 
 q2s = a2q2 
 s = a00v 
 s = a00 
 vsin AS 
 S(Ss[ St):The third case is analogous to the second.So in any case we have f(us0) = f(vt0), a
 s = a00 
 us0 anda0 
 t = a00 
 vt0 in AS 
 S(Ss [ St) for some a00 2 AS ; u; v 2 S ands0; t0 2 fs; tg:For cyclic acts we have the following description of weak homoatness.Lemma 2.12 Let � be a right congruence on a monoid S: The cyclic rightS-act S=� is weakly homoat if and only if for all elements s; t 2 S and31



all homomorphisms f : S(Ss [ St) ! SS; if f(s)�f(t) then there existu; v; p1; p2; q1; q2 2 S such that either f(us) = f(vt) and[1] = [p1][q1] = [u] p1s = q1s[1] = [p2][q2] = [v] p2t = q2t;or f(us) = f(vs) and [1] = [p1][q1] = [p2] p1t = q1t[q2] = [v] p2t = q2s[1] = [u];or f(ut) = f(vt) and [1] = [p1][q1] = [p2] p1s = q1s[q2] = [u] p2s = q2t[1] = [v]:Proof. Necessity. Let S=� be weakly homoat. Suppose that f(s)�f(t)for some s; t 2 S and a homomomorphism f : S(Ss [ St) ! SS: Then wehave the equality [1]f(s) = [1]f(t) in S=�: By Lemma 2.11 there exista00; a1; a2; u0; v0; p01; p02; q01; q02 2 S such that either f(u0s) = f(v0t) and[1] = [a1]p01[a1]q01 = [a00]u0 p01s = q01s[1] = [a2]p02[a2]q02 = [a00]v0 p02t = q02t;or f(u0s) = f(v0s) and [1] = [a1]p01[a1]q01 = [a2]p02 p01t = q01t[a2]q02 = [a00]v0 p02t = q02s[1] = [a00]u0;or f(u0t) = f(v0t) and [1] = [a1]p01[a1]q01 = [a2]p02 p01s = q01s[a2]q02 = [a00]u0 p02s = q02t[1] = [a00]v0:32



The claim follows if we use that � is a right congruence, f is a homomor-phism and denote p1 = a1p01; q1 = a1q01; p2 = a2p02; q2 = a2q02; u = a00u0 andv = a00v0:Su�ciency. We use Lemma 2.11 to prove that S=� is weakly homoat.Suppose that [a]f(s) = [a0]f(t) for some a; a0; s; t 2 S and a homomorphismf : S(Ss[St)! SS: Then f(as)�f(a0t):Denoting h = f jSas[Sa0t the restric-tion of f to the left ideal Sas [ Sa0t; we have h(as)�h(a0t): By assumptionthere exist elements u; v; p1; p2; q1; q2 2 S such that either h(uas) = h(va0t)and [1] = [p1][q1] = [u] p1as = q1as[1] = [p2][q2] = [v] p2a0t = q2a0t;or h(uas) = h(vas) and [1] = [p1][q1] = [p2] p1a0t = q1a0t[q2] = [v] p2a0t = q2as[1] = [u];or h(ua0t) = h(va0t) and [1] = [p1][q1] = [p2] p1as = q1as[q2] = [u] p2as = q2a0t[1] = [v]:Using that � is a right congruence and the de�nition of h, we obtain eitherf(uas) = f(va0t) and [a] = [1]p1a[1]q1a = [1]ua p1as = q1as[a0] = [1]p2a0[1]q2a0 = [1]va0 p2a0t = q2a0t;or f(uas) = f(vas) and[a0] = [1]p1a0[1]q1a0 = [1]p2a0 p1a0t = q1a0t[1]q2a = [1]va p2a0t = q2as[a] = [1]ua;33



or f(ua0t) = f(va0t) and [a] = [1]p1a[1]q1a = [1]p2a p1as = q1as[1]q2a0 = [1]ua0 p2as = q2a0t[a0] = [1]va0:Hence S=� is weakly homoat.De�nition 23 We say that a right ideal K of a monoid S is strongly leftannihilating if for all s; t 2 S nK and for all homomorphismsf : S(Ss[ St)! SS f(s); f(t) 2 K ) f(s) = f(t):Every strongly left annihilating right ideal is left annihilating. Indeed, ifxt; yt 2 K for t 2 S and x; y 2 S nK then �t(x); �t(y) 2 K: This implies, ifK is strongly left annihilating, that xt = yt: Hence K is left annihilating.It turns out that not all left annihilating ideals are strongly left annihi-lating.Example 2 Let S be an annihilating chain of semigroup S1 = f1g, aright zero semigroup S2 = fs; tg, a left zero semigroup S3 = fx; yg and asemigroup S4 = f0g (1 > 2 > 3 > 4). Consider a right ideal K = fx; y; 0g.Suppose that uz; vz 2 K, z 2 S, u; v 2 S n K. Then z 2 K anduz = vz = z. Hence K is left annihilating.De�ne a mapping f : Ss [ St! S byf(us) = ux;f(ut) = uy;u 2 S: It is straightforward to check that f is a homomorphism of leftS-acts. Now f(s); f(t) 2 K but f(s) 6= f(t): Thus K is not strongly leftannihilating.Lemma 2.13 Let K be a right ideal of a monoid S: The right Rees factoract S=K is weakly homoat if and only if S is right reversible, K is leftstabilizing and K is strongly left annihilating.Proof. Necessity. Let S=K be weakly homoat. Then S=K is weaklyat. Hence S is right reversible and K is left stabilizing by Proposition1.11. Let us show that K is strongly left annihilating. If K = S then thestatement is obvious. Assume that K � S: Then 1 62 K and hence the�K-class of identity element is a singleton. Suppose that f(s); f(t) 2 K for34



some s; t 2 S nK and a homomorphism f : S(Ss [ St)! SS: This meansthat f(s)�Kf(t): By Lemma 2.12 there are three possibilities.a) There exist u; v; p1; p2; q1; q2 2 S such that f(us) = f(vt) and[1] = [p1][q1] = [u] p1s = q1s[1] = [p2][q2] = [v] p2t = q2t:Consequently p1 = 1 = p2: Now s 62 K and s = q1s imply that q1 62 K;therefore q1 = u: Analogously q2 = v: Thusf(s) = f(q1s) = f(us) = f(vt) = f(q2t) = f(t):b) There exist u; v; p1; p2; q1; q2 2 S such that f(us) = f(vs) and[1] = [p1][q1] = [p2] p1t = q1t[q2] = [v] p2t = q2s[1] = [u]:Then p1 = 1 and t = q1t; which, together with t 62 K; implies that q1 62 K:Consequently q1 = p2 and t = q1t = p2t = q2s: This again implies thatq2 62 S; hence v = q2 and t = vs: Since [1] = [u] here means that u = 1; wehave got f(s) = f(us) = f(vs) = f(t):c) This case is similar to the previous one.Su�ciency. Let S be right reversible, K left stabilizing and stronglyleft annihilating. We use Lemma 2.12 to show that S=K = S=�K is weaklyhomoat. Suppose that f(s)�Kf(t) for s; t 2 S and a homomorphismf : S(Ss [ St)! SS: If f(s) = f(t) then the elements u; v; p1; p2; q1; q2 weneed can all be taken equal to 1: For the case f(s); f(t) 2 K let us considerthe following four possibilities.a) s; t 2 K: Right reversibility of S implies that there exist u0; v0 2 Ssuch that u0s = v0t: Since K is left stabilizing, there exist q1; q2 2 K suchthat s = q1s and t = q2t: Take arbitrary z 2 K and denote u = zu0; v = zv0:Then we have f(us) = f(zu0s) = f(zv0t) = f(vt)and [1] = [1][q1] = [u] 1s = q1s[1] = [1][q2] = [v] 1t = q2t:35



Hence S=K is weakly homoat.b) s 2 K; t 62 K:Right reversibility of S implies the existence of elementsu0; v0 2 S such that u0s = v0t: Since K is a left stabilizing right ideal, thereexist q1; u 2 K such that s = q1s and uf(t) = f(t): Take arbitrary z 2 Kand denote p2 = zu0; q2 = zv0: Now we havef(ut) = f(1t)and [1] = [1][q1] = [p2] 1s = q1s[q2] = [u] p2s = q2t[1] = [1]:Hence S=K is again weakly homoat.c) s 62 K; t 2 K: This case is analogous to the previous one.d) s 62 K; t 62 K: Since K is strongly left annihilating, f(s) = f(t) andwe are done as before.Lemma 2.14 The following assertions are equivalent for a monoid S:1. �S satis�es condition (P).2. �S is weakly homoat.3. �S is weakly at.4. S is right reversible.Proof. 2. ) 3. is clear. 3. ) 4. and 4. ) 1. come from Corollary 1.12.1. ) 2. By Corollary 1.12 �S satis�es condition (P) if and only if S isright reversible. Clearly S is a left stabilizing and strongly left annihilatingright ideal of S. Hence �S �= S=S is weakly homoat by Lemma 2.13.Let us show that weak homoatness and principal weak homoatness aredi�erent notions.Example 3 (Principal weak homoatness does not imply weak homoat-ness.) Let K be a right zero semigroup with two or more elements and letS = K1 be a monoid obtained from K by external adjoining of identity.Clearly K is a right ideal of S and the Rees factor act S=K is not weaklyat (hence it cannot be weakly homoat), because S is not right reversible.But S=K is principally weakly homoat. To see this, let us use Lemma 2.8.Clearly K is a left stabilizing right ideal, so it remains to show that K isleft annihilating. Suppose that xt; yt 2 K for some x; y 2 S nK and t 2 S:Since jS nKj = 1; we immediately get that x = y = 1 and hence xt = yt:Thus K is left annihilating, too. 36



Moreover, atness does not imply weak homoatness, because otherwiseatness would imply principal weak homoatness, which is not the case(see Example 1). However, the question whether weak homoatness impliesatness remains open here.2.8 On acts satisfying condition (P)Here we see that the cells in the third column and the upper cell of thesecond column of Scheme 1 denote the same class of right S-acts | the classof all acts satisfying condition (P). We also give an example of a weaklyhomoat right S-act which does not satisfy condition (P).Proposition 2.15 The following assertions are equivalent for a rightS-act AS :1. The corresponding ' is surjective for every pullback diagramP (M;N; f; g; Q).2. The corresponding ' is surjective for every pullback diagramP (M;M; f; g; Q).3. The corresponding ' is surjective for every pullback diagramP (I; I; f; g; S), where I is a left ideal of S:4. The corresponding ' is surjective for every pullback diagramP (Ss; Ss; f; g; S), s 2 S:5. The corresponding ' is surjective for every pullback diagramP (S; S; f; g; S).6. The corresponding ' is surjective for every pullback diagramP (M;M; f; f; Q):7. AS satis�es condition (P).Proof. The proof of the equivalence of the conditions 1, 2, 3, 4, 5 and7 follows directly from the proof of Lemma 2.2 of [2]. The implication2. ) 6. is obvious. Let us show that 6. ) 7.Assume that ' is surjective for every pullback diagram P (M;M; f; f; Q):Suppose that as = a0s0; a; a0 2 AS ; s; s0 2 S. Consider a mappingf : S(S1FS2)! SS which is de�ned byf(x1) = xs;f(x2) = xs0;37



x 2 S (here we use the same notation as introduced after Lemma 1.15).Then uf(x1) = u(xs) = (ux)s = f((ux)1) = f(ux1);and analogously we obtain uf(x2) = f(ux2) for all u; x 2 S: That means,f is a homomorphism of left S-acts. Moreover, as = a0s0 means thata
 f(11) = a0 
 f(12) in AS 
 SS: Using surjectivity of ' for the pullbackdiagram P (S1FS2; S1FS2; f; f; S) we get a00 2 AS ; u; v 2 S; i; j 2 f1; 2gsuch that f(ui) = f(vj); a
11 = a00
ui and a0
12 = a00
vj in tensor prod-uct AS
S(S1tS2): The equality a
11 = a00
ui means by Lemma 1.1 thatthere exist a natural number n; elements a1; : : : ; an�1 2 AS ; b1; : : : ; bn�1;s1; : : : ; sn; t1; : : : ; tn�1 2 S and indices i1; : : : ; in�1 2 f1; 2g such thata = a1s1 s111 = t1(b1)i1a1t1 = a2s2 s2(b1)i1 = t2(b2)i2: : : : : :an�1tn�1 = a00sn sn(bn�1)in�1 = ui:Since S1 and S2 are disjoint, the equality s111 = t1(b1)i1 implies that i1 = 1:Analogously we get that i2 = i3 = : : : = in�1 = 1 and then also i = 1: Nowall the equalities in the right-hand column above hold in S1: Using that �1is a monomorphism of left S-acts we obtaina = a1s1 s11 = t1b1a1t1 = a2s2 s2b1 = t2b2: : : : : :an�1tn�1 = a00sn snbn�1 = u:which means that a
 1 = a00
u in AS 
 SS: Analogously we get j = 2 anda0 
 1 = a00 
 v in AS 
 SS: By Lemma 1.3 this means that a = a00u anda0 = a00v: Finally, f(u1) = f(v2) yields us = vs0 by the de�nition of f:Using this proposition we see that conditin (P) implies weak homoatness.This implication is strict.Example 4 (Weak homoatness does not imply condition (P).) Let usconsider a free monoid K = s� generated by one element s and let e = s0be the identity element of K: Let S = K1 be a monoid obtained by externaladjoining of identity 1 to K: Clearly K is a right ideal of S: The Rees factorS=K does not satisfy condition (P) (note that S=K is at), because K 6= Sand jKj > 1. Let us show that S=K is weakly homoat. Let I 6= S be aleft ideal of S: Then I � K: If k is the minimal nonnegative integer suchthat sk 2 K; then I = Ssk: So all left ideals of S are principal. By thede�nitions this means that a right S-act is weakly homoat if and only if it38



is principally weakly homoat. Consequently, to show that S=K is weaklyhomoat, it is su�cient to check that xt; yt 2 K with t 2 S, x; y 2 S nKimplies xt = yt: But this is evident since S nK = f1g.2.9 Weakly pullback at actsHere we show that the three lowest cells in the rightmost column of Scheme 1denote the same class of right S-acts. We �nd another description of a rightS-act (cyclic right S-act, right Rees factor act) having the correspondingproperty and give examples showing that this class lies properly betweenthe classes of all pullback at right S-acts and all right S-acts satisfyingcondition (P).First, let us introduce a generalization of condition (E):(E0) (8a 2 AS)(8s; s0; z 2 S)(as = as0 ^ sz = s0z )(9a0 2 AS)(9u 2 S)(a = a0u ^ us = us0))and one more condition on a right S-act AS :(PF0) (8a; a0 2 AS)(8s; s0; t; t0; z; w 2 S)(sz = tw ^ s0z = t0w ^ as = a0s0 ^ at = a0t0 )(9a00 2 AS)(9u; v 2 S)(a = a00u ^ a0 = a00v ^ us = vs0 ^ ut = vt0)):We also need the following lemma.Lemma 2.16 ([2]) If AS satis�es condition (P) and a 
 m = a0 
 m0 inAS 
 SM for a left S-act SM , a; a0 2 AS, m;m0 2 SM then there exista00 2 AS and u; v 2 S such that a = a00u; a0 = a00v and um = vm0.Proposition 2.17 The following assertions are equivalent for a rightS-act AS :1. The corresponding ' is surjective and injective for every pullbackdiagram P (I; I; f; g; S); where I is a left ideal of S:2. The corresponding ' is surjective and injective for every pullbackdiagram P (Ss; Ss; f; g; S); s 2 S:3. The corresponding ' is surjective and injective for every pullbackdiagram P (S; S; f; g; S):4. AS satis�es condition (PF0).5. AS satis�es conditions (P) and (E0).39



Proof. 1. ) 2. ) 3. is clear.3. ) 4. Let the corresponding ' be surjective and injective for everypullback diagram P (S; S; f; g; S):Then AS satis�es condition (P) by Propo-sition 2.15. Let sz = tw; as = a0s0;s0z = t0w; at = a0t0;a; a0 2 AS ; s; s0; t; t0; z; w 2 S: Take the homomorphisms �z ; �w : SS ! SS:Then �z(s) = �w(t); �z(s0) = �w(t0) and by Lemma 1.3 a
 s = a0 
 s0 anda
 t = a0
 t0 in AS 
SS: This means that '(a
 (s; t)) = '(a0
 (s0; t0)) forthe ' corresponding to the diagram P (SS; SS; �z; �w; SS). Using injectivityof ' we get the equality a
 (s; t) = a0 
 (s0; t0) in AS 
 SP; whereSP = f(u; v) 2 S � S j �z(u) = �w(v)g = f(u; v) 2 S � S j uz = vwg:Since AS satis�es conditon (P), by Lemma 2.16 there exist a00 2 AS ; u; v 2 Ssuch that a = a00u; a0 = a00v and u(s; t) = v(s0; t0): But then us = vs0 andut = vt0:4. ) 5. Condition (P) follows by taking t = s, t0 = s0 and z = w = 1in condition (PF0). Let us show that condition (E0) holds. Suppose thatas = as0; sz = s0z; a 2 AS ; s; s0; z 2 S: The equalitiessz = 1sz; as = as0;s0z = 1sz; a1 = a1;imply the existence of a00 2 AS and u; v 2 S such that us = vs0; u1 = v1and a = a00u:5. ) 1. Since AS satis�es condition (P), the corresponding ' is surjec-tive for every pullback diagram P (I; I; f; g; S) by Proposition 2.15. Let usshow that ' is also injective for every pullback diagram P (I; I; f; g; S):Takesuch a diagram and suppose that there exist i; i0; j; j 0 2 I and a; a0 2 ASsuch that f(i) = g(j); a
 i = a0 
 i0 in AS 
 SIf(i0) = g(j 0); a
 j = a0 
 j 0 in AS 
 SI:Then the equalities a
 i = a0 
 i0 and a
 j = a0 
 j0 hold also in AS 
 SSand therefore ai = a0i0 and aj = a0j 0 by Lemma 1.3. Using condition (P) weget from the equality ai = a0i0 that there exist u1; v1 2 S and b 2 AS suchthat a = bu1, a0 = bv1 and u1i = v1i0. Therefore bu1j = aj = a0j 0 = bv1j 0:Once more applying condition (P) we get from the equality bu1j = bv1j 0that there exist u2; v2 2 S and d 2 AS such that b = du2 = dv2 andu2u1j = v2v1j 0. Sou2u1g(j) = g(u2u1j) = g(v2v1j 0) = v2v1g(j 0) = v2v1f(i0) = v2f(v1i0)= v2f(u1i) = v2u1f(i) = v2u1g(j):40



The equalities du2 = dv2 and u2(u1g(j)) = v2(u1g(j)) yield by condition(E0) the existence of w 2 S and a00 2 AS such that d = a00w and wu2 = wv2:Hence a
 (i; j) = bu1 
 (i; j) = du2u1 
 (i; j) = a00wu2u1 
 (i; j)= a00 
 (wu2u1i; wu2u1j) = a00 
 (wv2v1i0; wv2v1j 0)= a00wv2v1 
 (i0; j 0) = dv2v1 
 (i0; j 0) = bv1 
 (i0; j 0)= a0 
 (i0; j 0)in tensor product AS 
 SP; whereSP = f(m;n) 2 SI � SI j f(m) = g(n)g:Thus ' is injective for the pullback diagram P (I; I; f; g; S):Equivalence of conditions 3, 4 and 5 was proved in [27].De�nition 24 We say that a right S-act AS is weakly pullback at, if thecorresponding ' is surjective for every pullback diagram P (I; I; f; g; S);where I is a left ideal of S:Since condition (E) implies condition (E0), it follows from Theorem 1.9 andProposition 2.17 that pullback atness implies weak pullback atness.Lemma 2.18 Let � be a right congruence on a monoid S: The cyclic rightS-act S=� is weakly pullback at if and only if it satis�es condition (P) and(8s; s0; z 2 S)(s�s0 ^ sz = s0z ) (9u 2 S)(u�1^ us = us0)):Proof. Necessity. Let S=� be weakly pullback at. By Proposi-tion 2.17 S=� satis�es conditions (P) and (E0). Now suppose that s�s0and sz = s0z for some s; s0; z 2 S. Then [1]�s = [1]�s0. Condition (E0) im-plies the existence of x; u0 such that [1]� = [x]�u0 and u0s = u0s0: Denotingu = xu0 we have u�1 and us = us0:Su�ciency. By Proposition 2.17 it is su�cient to show that S=� sat-is�es condition (E0). Suppose that [x]�s = [x]�s0 and sz = s0z for somex; s; s0; z 2 S: Then (xs)�(xs0) and (xs)z = (xs0)z: Hence by the assump-tion there exists u 2 S such that u�1 and uxs = uxs0: Consequently,[x]� = [1]�ux and (ux)s = (ux)s0:De�nition 25 Let S be a monoid and P � S its submonoid. We shall saythat the submonoid P is weakly left collapsible if(8s; s0 2 P )(8z 2 S)(sz = s0z ) (9u 2 P )(us = us0)):41



Every left collapsible submonoid is weakly left collapsible. The converse isnot true: take a nontrivial group as an example.Lemma 2.19 Let K be a right ideal of a monoid S. The right Rees factoract S=K is weakly pullback at if and only if jKj = 1 or K = S is rightreversible and weakly left collapsible.Proof. Necessity. Since S=K is weakly pullback at, it satis�es con-dition (P). By Proposition 1.11 either jKj = 1 or K = S is right reversible.If K = S then s�Ks0 for all s; s0 2 S and hence sz = s0z; s; s0; z 2 S impliesby Lemma 2.18 the existence of u 2 S such that us = us0: This means thatS is weakly left collapsible.Su�ciency. If jKj = 1 then S=K �= S is free and hence also weaklypullback at. Suppose that K = S is right reversible and weakly leftcollapsible. Then S=K �= �S : By Corollary 1.12 S=K satis�es condition(P). By Lemma 2.18 it remains to show that sz = s0z; s; s0; z 2 S impliesthe existence of u 2 S such that us = us0; but this is exactly weak leftcollapsibility of S:For the one-element right S-act Lemma 2.19 yields the following result.Corollary 2.20 The one-element right S-act �S is weakly pullback at ifand only if S is right reversible and weakly left collapsible.Example 5 (Weak pullback atness does not imply pullback atness.) LetS be a nontrivial group. Then it is right reversible and weakly left collapsi-ble and hence the one-element right S-act �S is weakly pullback at. Butit cannot be pullback at, because it does not satisfy condition (E). More-over, this means that condition (E0) does not imply (E), because otherwiseweak pullback atness would imply pullback atness.To show that condition (P) and weak pullback atness are di�erent conceptswe need a lemma.Lemma 2.21 ([27]) Let S be a right collapsible monoid. Then everyweakly pullback at right S-act AS is pullback at.Proof. Let AS be weakly pullback at. It is su�cient to show that ASsatis�es condition (E). Suppose that as = as0; a 2 AS ; s; s0 2 S: By theright collapsibility of S there exist z 2 S such that sz = s0z: Since ASsatis�es condition (E0) by Proposition 2.17, there exist a0 2 AS ; u 2 S suchthat a = a0u; and us = us0. But this means that AS satis�es condition (E)and hence it is pullback at. 42



Example 6 (Condition (P) does not imply weak pullback atness.) LetT = s� be a monogenic free monoid generated by an element s and let Sbe a monoid obtained from T by external adjoining of zero 0: Since S isright collapsible, a right S-act is weakly pullback at if and only if it ispullback at. Let us consider the monocyclic right S-act S=�(1; s); where�(1; s) is the smallest right congruence identifying the elements 1 and s. By[1], Proposition 2.10, this act satis�es condition (P) and it is pullback atif and only if s is an aperiodic element. Since s is not an aperiodic element,S=�(1; s) cannot be pullback at and hence it cannot be weakly pullbackat either. 2.10 On pullback at actsFinally we note that the two upper cells in the rightmost column of Scheme 1denote the class of pullback at acts.From [2] we have the following condition on a right S-act AS :(PF) (8a; a0 2 AS)(8s; s0; t; t0 2 S)(as = a0s0 ^ at = a0t0 )(9a00 2 AS)(9u; v 2 S)(a = a00u ^ a0 = a00v ^ us = vs0 ^ ut = vt0)):It is easy to see that condition (PF) implies condition (PF0).Proposition 2.22 The following assertions are equivalent for a rightS-act AS :1. The corresponding ' is surjective and injective for every pullbackdiagram P (M;N; f; g; Q):2. The corresponding ' is surjective and injective for every pullbackdiagram P (M;M; f; g; Q):3. AS satis�es conditions (P) and (E).4. AS satis�es condition (PF).Proof. The equivalence of conditions 1 and 3 was proved in [32]. Theequivalence of all four conditions follows fromTheorems 2.3 and 2.4 of [2]. Iteven follows that these conditions are equivalent to the surjectivity and in-jectivity of the corresponding ' for the pullback diagram P (S; S; c�; c�;�);where � is the one-element left S-act and c� : S ! � is the constantmapping. 43



2.11 ConclusionAfter showing which properties of acts under consideration are the sameand which are di�erent, we have come to the following scheme for therelationships between them:

PWF PWHFWFF WHF(P)WPFPF

TF.Scheme 244



Here the abbreviations stand for the following properties of S-acts:PF | pullback atnessWPF | weak pullback atness(P) | condition (P)F | atnessWF | weak atnessWHF | weak homoatnessPWHF | principal weak homoatnessPWF | principal weak atnessTF | torsion freeness.A line between two properties means that the property at the higher end ofthe line implies the property at the lower end of the line and the converseis not true.Scheme 2 is not the only possible one to depict atness properties lyingbetween strong atness and torsion freeness. There are di�erent require-ments (e.g. only injectivity of ' for some kind of pullback diagrams) thatare not considered here at all. Moreover, there are well-known atness prop-erties (condition (E), equalizer atness) that do not appear in Scheme 2.This leaves open the possibility of composing a scheme which includes allso far studied atness properties in terms of preserving pullbacks.
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3 ON HOMOLOGICAL CLASSIFICATIONIn this section we consider the homological classi�cation. That means weconsider the questions like \When all right acts with a property X have an-other property Y?" and \When all right acts have property Y?". We seekfor answers referring only to internal properties of a monoid over whichthese acts are considered. The properties we consider here are torsion free-ness, principal weak atness, principal weak homoatness, weak homoat-ness, condition (P), weak pullback atness, pullback atness, projectivityand freeness. We have added projectivity and freeness to make the pic-ture more complete, and we almost do not look at the questions related toatness and weak atness.There are several possible levels for considering problems of homologicalclassi�cation. We here try to classify monoids by properties of right Reesfactor acts, cyclic right acts and arbitrary right acts over them. In somecases, where the answer to a homological classi�cation problem is not knownfor the general situation, we try to clarify the situation in the (simpler) classof idempotent monoids.3.1 Principal weak atnessHere we give a characterization of those monoids over which all torsion freeright S-acts are principally weakly at.First we say some words on almost regular monoids.De�nition 26 We say that an element s of a monoid S is left almost regu-lar if there exist elements r; r1; : : : ; rm; s1; : : : ; sm 2 S and right cancellableelements c1; : : : ; cm 2 S such thats1c1 = sr1s2c2 = s1r2� � �smcm = sm�1rms = smrs:A monoid S is left almost regular if all its elements are left almost regular.Almost regular monoids were introduced in [9] where it was proved thatall divisible right S-acts are principally weakly injective if and only if Sis right almost regular. (In [9] those monoids were called simply almostregular and the indices were used in a slightly di�erent way.) The de�nition46



of a left almost regular monoid is obtained by dualization of the de�nition ofa right almost regular monoid in the sense that `left cancellable' is replacedby `right cancellable' and the order of factors in products is reversed.Later it turns out that if we require the principal weak atness of alltorsion free right acts then we get the class of left almost regular monoids.This result may be considered as further evidence of some kind of dualityof the properties of acts grouped around projectivity and injectivity.It is easy to see that if every element of S is either regular or rightcancellable then S is left almost regular | a fact which holds also for leftPP monoids. PP monoids were �rst investigated by Kilp [14], and theterm was introduced by Fountain in [8] .De�nition 27 A monoid S is called left PP monoid if for every s 2 Sthere exists an idempotent e 2 S such that es = s and for all u; v 2 S;us = vs implies ue = ve:It turns out that the class of left almost regular monoids lies properly be-tween the class of left PP monoids and the class of monoids, every elementof which is either regular or right cancellable.Proposition 3.1 ([26]) Every left almost regular monoid is a left PPmonoid.Proof. Let S be a left almost regular monoid and s 2 S: Then thereexist elements r; r1; : : : ; rm; s1; : : : ; sm 2 S and right cancellable elementsc1; : : : ; cm 2 S such that s1c1 = sr1s2c2 = s1r2� � �smcm = sm�1rms = smrs:From the �rst and the last equality we gets1c1 = sr1 = smrsr1 = smrs1c1:Since c1 is right cancellable, s1 = smrs1: Using this, from the second equal-ity we get s2c2 = s1r2 = smrs1r2 = smrs2c2;which implies s2 = smrs2: Continuing in this manner we �nally obtainsm = smrsm; and hence e = smr is an idempotent such that es = s.47



Now let us = vs: Thenus1c1 = usr1 = vsr1 = vs1c1and hence us1 = vs1: Further,us2c2 = us1r2 = vs1r2 = vs2c2implies us2 = vs2 and continuing in this manner we get usm = vsm: Henceusmr = vsmr and thus S is a left PP monoid.The following example shows that the class of left almost regular monoidsis a proper subclass of the class of left PP monoids.Example 7 Let K = s� be a free monoid with a generating element sand identity element e: Let S = K1; i.e. let S be obtained from K by theexternal adjoining of the identity element 1 (see Example 4). Then S iscommutative and one can see that it is a PP monoid by direct checkingor by applying a result of [14], which says that a commutative monoid is aPP monoid if and only if it is a semilattice of cancellative monoids. But Scannot be an almost regular monoid, because the only cancellable elementis 1 and hence the almost regularity of s would mean the existence of theelements r; r1; : : : ; rm; s1; : : : ; sm 2 S such thats = smrs = sm�1rmrs = : : : = s1r2 : : : rmrs = sr1r2 : : : rmrs;which contradicts the non-regularity of s:There exist left almost regular monoids, which have elements that are nei-ther regular nor right cancellable.Example 8 Let S = 
e; s; c j e2 = e; es = se = ec = ce = s; sc = cs = s2�[f1g : It is not di�cult to see that S is a commutative monoid consisting ofthe elements of the form 1; e; sk (k 2 N) and ck (k 2 N): The elements of theform ck and 1 are the only cancellable elements, whereas 1 and e are theonly regular elements. But since eck = sk and sk = esk; the elements skare also almost regular, although they are neither regular nor cancellable.Thus S is almost regular.We shall now give a construction of a right ideal of a monoid S with somespeci�c properties.Take an element s 2 S: Let L(s) be the subset of S consisting of allelements t 2 S for which there exist elements r1; : : : ; rm; s1; : : : ; sm�1 2 S48



and right cancellable elements c1; : : : ; cm 2 S such thats1c1 = sr1s2c2 = s1r2� � �tcm = sm�1rm:Since s1 = s1; we see that s 2 L(s) and so L(s) is nonempty. Let KTF (s)be the right ideal of S generated by the set L(s); i.e.KTF (s) = [t2L(s) tS:Lemma 3.2 For every s 2 S the right ideal KTF (s) is the smallest rightideal J containing the element s such that the right Rees factor act S=J istorsion free.Proof. As we saw, KTF (s) is a right ideal containing s: Let us showthat S=KTF (s) is torsion free. Suppose that s0c 2 KTF (s) for s0 2 Sand right cancellable c 2 S: Then s0c 2 tS for some t 2 L(s); hencethere exist r1; : : : ; rm; rm+1; s1; : : : ; sm�1 2 S and right cancellable elementsc1; : : : ; cm 2 S such that s1c1 = sr1s2c2 = s1r2� � �tcm = sm�1rms0c = trm+1:This means s0 2 L(s) and so s0 2 KTF (s): Thus S=KTF (s) is torsion freeby Proposition 1.11.Now suppose that K is a right ideal of S containing s such that S=Kis torsion free. We want to show that KTF (s) � K: Take tz 2 KTF (s);t 2 L(s); z 2 S: Then there exist r1; : : : ; rm; s1; : : : ; sm�1 2 S and rightcancellable elements c1; : : : ; cm 2 S such thats1c1 = sr1s2c2 = s1r2� � �tcm = sm�1rm:Now s 2 K implies s1c1 2 K: Since S=K is torsion free, s1 2 K by Propo-sition 1.11. Analogously s2; : : : ; sm�1; t 2 K and hence tz 2 K:49



If x; y 2 S then denoteKTF (x; y) = KTF (x) [KTF (y):As in the proof of Lemma 3.2 one can see that KTF (x; y) is the smallestright ideal containing elements x and y such that the right Rees factor actby it is torsion free.The next proposition is the reason why we have been discussing almostregular monoids.Proposition 3.3 ([26]) The following assertions are equivalent for amonoid S:1. All torsion free right S-acts are principally weakly at.2. All cyclic torsion free right S-acts are principally weakly at.3. All torsion free right Rees factor acts of S are principally weakly at.4. S is a left almost regular monoid.Proof. 1:) 2:) 3: is clear.3: ) 4: Suppose all torsion free right Rees factor acts are principallyweakly at. Take an element s 2 S and the right ideal KTF (s): By Lemma3.2 the right Rees factor act S=KTF (s) is torsion free. By assumptionS=KTF (s) must be principally weakly at. Hence by Proposition 1.11 fors 2 KTF (s) we can �nd tr 2 KTF (s); where t 2 L(s); r 2 S, such thattrs = s: The last equality together with the fact that t 2 L(s) yields thats is left almost regular.4:) 1: Let S be left almost regular. Assume that AS is a torsion freeact. Let as = a0s; for a; a0 2 AS ; s 2 S: Since s is left almost regular, thereexist elements r; r1; : : : ; rm; s1; : : : ; sm 2 S and right cancellable elementsc1; : : : ; cm 2 S such that s1c1 = sr1s2c2 = s1r2� � �smcm = sm�1rms = smrs:Using the �rst equality we getas1c1 = asr1 = a0sr1 = a0s1c1:50



Since AS is torsion free, we get as1 = a0s1: Analogously we obtain theequalities as2 = a0s2; : : : ; asm = a0sm: Then, clearly, asmr = a0smr: Nowwe havea
 s = a 
 smrs = asmr 
 s = a0smr 
 s = a0 
 smrs = a0 
 sin the tensor product AS
S(Ss) which means that AS is principally weaklyat by Lemma 1.6.To prove the following corollary we need a lemma.Lemma 3.4 ([23], [20]) The following assertions are equivalent for amonoid S:1. All right S-acts are torsion free.2. All cyclic right S-acts are torsion free.3. All right Rees factor acts of S are torsion free.4. Every right cancellable element of S is right invertible.Equivalence of conditions 1, 2 and 4 was proved in [23], and the equivalenceof 3 and 4 is in [20].We can now give a new proof of the following result.Corollary 3.5 ([15]) The following assertions are equivalent for a monoidS: 1. All right S-acts are principally weakly at.2. All cyclic right S-acts are principally weakly at.3. All right Rees factor acts of S are principally weakly at.4. S is a regular monoid.Proof. 1. ) 2. ) 3. is clear.3. ) 4. If all right Rees factor acts are principally weakly at then allright Rees factor acts are torsion free and all torsion free Rees factor actsare principally weakly at. Hence by Lemma 3.4 every right cancellableelement of S is right invertible and by Proposition 3.3 S is left almost51



regular. Take s 2 S: Then there exist elements r; r1; : : : ; rm; s1; : : : ; sm 2 Sand right cancellable elements c1; : : : ; cm 2 S such thats1c1 = sr1s2c2 = s1r2� � �smcm = sm�1rms = smrs:Multiplying the corresponding equality by the right inverse c�1i of ci;i 2 f1; : : : ; mg;we get s1 = sr1c�11s2 = s1r2c�12� � �sm = sm�1rmc�1m :Hence s = smrs = sm�1rmc�1m rs = sm�2rm�1c�1m�1rmc�1m rs = : : := sr1c�11 : : :rm�1c�1m�1rmc�1m rs;i.e. s is regular.4. ) 1. If S is regular then it is left almost regular and every rightcancellable element is right invertible. Hence all right Rees factor acts aretorsion free by Lemma 3.4 and all torsion free right Rees factor acts areprincipally weakly at by Proposition 3.3. Thus all right Rees factor actsare principally weakly at.3.2 Principal weak homoatnessIn this subsection we characterize monoids over which all (all torsion free,all principally weakly at) right Rees factor acts are principally weaklyhomoat, monoids over which all torsion free right acts are principallyweakly homoat and idempotent monoids over which all right Rees factoracts are principally weakly homoat. We see that if all torsion free rightS-acts are weakly homoat then all torsion free right S-acts are weaklypullback at and if all right S-acts are principally weakly homoat then allright S-acts are weakly pullback at.We start with Rees factor acts.Proposition 3.6 The following assertions are equivalent for a monoid S:1. All principally weakly at right Rees factor acts of S are principallyweakly homoat. 52



2. Every left stabilizing right ideal of S is left annihilating.3. (8t; x; y; x0; y0; x1; y1; x2; y2; : : : 2 S)((x0 = xt ^ (8i 2 N0)(xi+1xi = xi)^y0 = yt ^ (8i 2 N0)(yi+1yi = yi) ^ x0 6= y0))(9p 2 fx0; x1; : : :g [ fy0; y1; : : :g)(9z 2 S)(x = pz _ y = pz)):Proof. 1. ) 2. Let K be a left stabilizing right ideal of S: Thenthe Rees factor act S=K is principally weakly at by Proposition 1.11.By assumption S=K is principally weakly homoat. Hence K is a leftannihilating right ideal by Lemma 2.8.2. ) 3. Suppose thatx0 = xt ^ (8i 2 N0)(xi+1xi = xi) ^ y0 = yt ^ (8i 2 N0)(yi+1yi = yi)for some t; x; y; x0; y0; x1; y1; x2; y2; : : : 2 S; x0 6= y0: Consider a right idealK = 0@ [i2N0xiS1A[0@ [i2N0 yiS1A :For every k 2 K there exists l 2 K such that lk = k; that is K is leftstabilizing. Hence S=K is principally weakly at by Proposition 1.11. Byassumption K is left annihilating. Since xt; yt 2 K and xt 6= yt; eitherx 2 K or y 2 K: Thus either x = pz or y = pz for somep 2 fx0; x1; : : :g [ fy0; y1; : : :g and z 2 S:3. ) 1. Let S=K be a principally weakly at right Rees factor act.Then K is left stabilizing by Proposition 1.11. We have to show that Kis left annihilating. Suppose that x0 = xt 2 K; y0 = yt 2 K for somex; y 2 S nK and t 2 S: Suppose that x0 6= y0: Since K is left stabilizing,there exist x1; y1; x2; y2; : : : 2 K such that xi+1xi = xi and yi+1yi = yi forevery nonnegative integer i: By assumption there exist p 2 fx0; x1; : : :g [fy0; y1; : : :g and z 2 S such that either x = pz or y = pz: Hence eitherx 2 K or y 2 K; a contradiction. So we must have the equality xt = yt;that means K is left annihilating.Example 9 Recall examples 4 and 7. There we had S = K1 where K = s�was a free monogenic monoid. Clearly S is a left annihilating right ideal ofS. It was shown in Example 4 that every proper right ideal of S has formskS for some nonnegative integer k (note that S is commutative). If k > 0then skS is not left stabilizing. If k = 0 then s0S = K is left annihilating asshown in Example 4. Thus all principally weakly at right Rees factor actsof S are principally weakly homoat by Proposition 3.6. But in Example 7we saw that S is not almost regular and hence not all torsion free rightRees factor acts are principally weakly homoat by Proposition 3.3.53



Corollary 3.7 All torsion free right Rees factor acts of a monoid S areprincipally weakly homoat if and only if S is left almost regular and(8x; y; t 2 S)(xt 6= yt) (x 2 KTF (xt; yt) _ y 2 KTF (xt; yt))):Proof. Necessity. If all torsion free right Rees factor acts are princi-pally weakly homoat then all torsion free right Rees factor acts are prin-cipally weakly at and hence S is left almost regular by Proposition 3.3.Suppose xt 6= yt; x; y; t 2 S: Let K = KTF (xt; yt): Then S=K is torsionfree and by assumption it is principally weakly homoat. Since xt; yt 2 Kand K is left annihilating, either x or y is in K:Su�ciency. Suppose S=K is a torsion free right Rees factor act. Leftalmost regularity of S implies that S=K is principally weakly at by Propo-sition 3.3 and hence K is left stabilizing by Proposition 1.11. It remainsto show that K is left annihilating and then apply Lemma 2.8. Supposethat xt; yt 2 K for some x; y 2 S n K: Then KTF (xt; yt) � K becauseKTF (xt; yt) is the smallest right ideal containing xt and yt such that theRees factor by it is torsion free. If xt 6= yt then by assumption either x 2 Kor y 2 K; a contradiction. Hence xt = yt:Corollary 3.8 All right Rees factor acts of a monoid S are principallyweakly homoat if and only if S is regular and(8x; y; t 2 S)(xt 6= yt) (x 2 xtS [ ytS _ y 2 xtS [ ytS)):Proof. Necessity. If all right Rees factor acts are principally weaklyhomoat then all right Rees factor acts are principally weakly at and hencewe get regularity from Corollary 3.5. Let us show thatKTF (xt; yt) = xtS [ ytS:Inclusion xtS [ ytS � KTF (xt; yt) being evident let us show thatKTF (xt; yt) � xtS [ ytS: Take w 2 KTF (xt; yt) = KTF (xt) [ KTF (yt):Without loss of generality we may assume that w 2 KTF (xt): By de�nitionofKTF (xt) there exist elements z; w0; r1; : : : ; rm; s1; : : : ; sm�1 2 S and rightcancellable elements c1; : : : ; cm 2 S such thats1c1 = xtr1s2c2 = s1r2� � �zcm = sm�1rmand w = zw0: Since S is regular, every right cancellable element of S is rightinvertible. Consequently, multiplying the corresponding equalities by the54



right inverses of right cancellable elements on the right we obtain s1 2 xtS;s2 2 xtS; : : : ; z 2 xtS and so w 2 xtS: Thus, indeed, KTF (xt; yt) = xtS [ytS: The rest follows now by Corollary 3.7.Su�ciency follows from corollaries 3.4 and 3.7.Example 10 Consider again a semilattice S = f1; e; f; 0g with ef = 0from Example 1. This monoid is regular and hence left almost regular. ByCorollary 3.5 all right Rees factor acts of S are principally weakly at andhence all torsion free right Rees factor acts are principally weakly at.Since 1 is the only right cancellable element of S, we see thatKTF (e) = eS = fe; 0g and KTF (0) = 0S = f0g: ThereforeKTF (e; 0) = KTF (e) [KTF (0) = fe; 0g:Now 1e 6= fe and 1; f 62 KTF (1e; fe) = KTF (e; 0) = fe; 0g: This means byCorollary 3.7 that not all torsion free right Rees factor acts are principallyweakly homoat and hence not all right Rees factor acts are principallyweakly homoat.Now let us consider cyclic acts.Proposition 3.9 All cyclic right S-acts are principally weakly homoat ifand only if S is regular and(8x; y; t 2 S)(9u; v 2 S)(ut = vt ^ u�(xt; yt)x^ v�(xt; yt)y):Proof. Necessity. Regularity follows by Corollary 3.5. Suppose thatx; y; t 2 S: By assumption S=�(xt; yt) is principally weakly homoat andhence xt�(xt; yt)yt implies by Lemma 2.7 the existence of u; v 2 S suchthat ut = vt; u�(xt; yt)x and v�(xt; yt)y:Su�ciency. Suppose that xt�yt for x; y; t 2 S and a right congruence� on S: By assumption there exist u; v 2 S such that ut = vt; u�(xt; yt)xand v�(xt; yt)y: Since �(xt; yt) � �; we have u�x and v�y: Hence S=� isprincipally weakly homoat by Lemma 2.7.As we saw in Example 10, the class of monoids described by the conditionof Proposition 3.9 is a proper subclass of the class of regular monoids.For arbitrary right S-acts we can prove the following result.Proposition 3.10 All torsion free right S-acts are principally weakly ho-moat if and only if S is a right cancellative monoid.55



Proof. Necessity. Take an arbitrary element s 2 S and the right idealK = KTF (s). If x; y and z denote elements not belonging to S, de�neA(K) = (fx; yg � (S nK)) [ (fzg �K);and de�ne a right S-action on A(K) by(x; u)s = ( (x; us) if us 62 K(z; us) if us 2 K(y; u)s = ( (y; us) if us 62 K(z; us) if us 2 K(z; u)s = (z; us);We obtain a right S-act. (Note that if K = S then A(K) is isomorphicto SS :) Our �rst aim is to show that this S-act is torsion free. To thisend, suppose that (a; u)c = (a0; v)c; a; a0 2 fx; y; zg; u; v; c 2 S; c is rightcancellable. Then uc = vc and cancelling c yields u = v: If a = a0 = xor a = a0 = y then (a; u) = (a0; v): Otherwise (a; u)c = (a0; v)c = (z; uc)and uc 2 K: That means there exist t 2 L(s); z 2 S such that uc = tz:Since t 2 L(s); there exist elements r; r1; : : : ; rm; s1; : : : ; sm�1 2 S and rightcancellable elements c1; : : : ; cm 2 S such thats1c1 = sr1s2c2 = s1r2� � �tcm = sm�1rm:These equalities together with uc = tz mean that u = v 2 K: Consequentlya = a0 = z and hence again (a; u) = (a0; v): Thus A(K) is indeed torsionfree.By assumption A(K) must be principally weakly homoat. Now theequality (x; 1)s = (y; 1)s (= (z; s), because s 2 K) implies the existenceof u; v; w 2 S and a 2 fx; y; zg such that us = vs; (x; 1) = (a; w)u and(y; 1) = (a; w)v by Proposition 2.6. This implies x = a = y; which meansK = S: Since 1 2 K; 1 = tz ands1c1 = sr1s2c2 = s1r2� � �sm�1cm�1 = sm�2rm�1tcm = sm�1rmfor some t; z; r1; : : : ; rm; s1; : : : ; sm�1 2 S and right cancellable elementsc1; : : : ; cm 2 S: Since t and cm are right cancellable, sm�1 is right can-cellable. Since sm�1 and cm�1 are right cancellable, sm�2 is right can-cellable. Continuing in this manner we get that s is right cancellable.56



Su�ciency. Let S be a right cancellative monoid, AS a torsion freeS-act and as = a0s; a; a0 2 AS ; s 2 S: Then a = a0 by torsion freenessand we see that AS is weakly homoat by taking a00 = a; u = v = 1 inProposition 2.6.Corollary 3.11 The following assertions are equivalent for a monoid S:1. All torsion free right S-acts are weakly pullback at.2. All torsion free right S-acts satisfy condition (P).3. All torsion free right S-acts are weakly homoat.Proof. 1. ) 2. ) 3. is obvious.3. ) 1. Assume that all torsion free right S-acts are weakly homoat.Then S is right cancellative by Proposition 3.10. Suppose thatAS is torsionfree and as = a0s0, a; a0 2 AS ; s; s0 2 S: By assumption AS is weaklyhomoat and hence by Lemma 2.11 (using right cancellativity) there exista00; a1; a2 2 AS ; u; v; p1; p2; q1; q2 2 S such that eitherus = vs0; a = a00u and a0 = a00v;or a0 = a2p2; a = a2q2 and q2s = p2s0;or a = a2p2; a0 = a2q2 and p2s = q2s0:Thus AS satis�es condition (P). Suppose as = as0 and sz = s0z; a 2 AS ;s; s0; z 2 S: Then s = s0 and hence a = a1 and 1s = 1s0: Thus AS satis�escondition (E0). By Proposition 2.17 AS is weakly pullback at.Unfortunately we do not have the internal description of monoids for whichthe assertions of the previous corollary hold. However, we can show thatthe corresponding class (which is a subclass of the class of right cancellativemonoids by Proposition 3.10) is strictly bigger than the class of groups.Example 11 Let S be a right cancellative monoid such that for all s; s0 2 Seither s 2 Ss0 or s0 2 Ss (for instance a free monogenic monoid). Letus show that all torsion free right S-acts satisfy condition (P). Supposethat AS is a torsion free right S-act and as = a0s0; a; a0 2 AS ; s; s0 2 S:By assumption there exists v 2 S such that (without loss of generality)s = vs0: The equality avs0 = a0s0 implies av = a0 by torsion freeness of AS .Denoting a00 = a we have a = a001; a0 = a00v and 1s = vs0; thus AS satis�escondition (P). 57



In [30] it was proved that all right S-acts satisfy condition (P) if and onlyif S is a group. The proposition below is a little stronger.Proposition 3.12 The following assertions are equivalent for a monoid S:1. All right S-acts are weakly pullback at.2. All right S-acts satisfy condition (P).3. All right S-acts are weakly homoat.4. All right S-acts are principally weakly homoat.5. S is a group.Proof. 1. ) 2. ) 3. ) 4. is clear.4. ) 5. If all right S-acts are principally weakly homoat then allright S-acts are principally weakly at and all torsion free right S-acts areprincipally weakly homoat. Hence by Corollary 3.5 S is regular and byProposition 3.10 S is right cancellative. So S must be a group.5. ) 1. Let S be a group and AS a right S-act. We know that ASsatis�es condition (P). By Proposition 2.17 it is su�cient to show that ASsatis�es condition (E0). Suppose that as = as0 and sz = s0z for somea 2 AS ; s; s0; z 2 S: Then multiplying sz = s0z by z�1 on the right, we gets = s0 and hence we can take a0 = a and u = 1:Finally we consider the special case of idempotent monoids. For them thecondition of Corollary 3.8 takes a simpler form.Proposition 3.13 Let S be an idempotent monoid. Then all right Reesfactor acts of S are principally weakly homoat if and only if(8e; f 2 S)(ef = f _ e = efe):Proof. Necessity. Take e; f 2 S: If e = 1 or f = 1 then we obviouslyhave what we need. Assume that e 6= 1, f 6= 1 and ef 6= f: By Corollary3.8 either e 2 efS [ fS or 1 2 efS [ fS: Since ef and f are not rightinvertible, necessarily e 2 efS [ fS: Suppose e = efz for some z 2 S: Thene = efz = (ef)(ef)z = (ef)(efz) = efe:If e = fz for some z 2 S thene = ee = (fz)(fz) = (fz)f(fz) = efe:Su�ciency. We use Corollary 3.8 to show that all Rees factors of Sare principally weakly homoat. Suppose that xt 6= yt; x; y; t 2 S: It isimpossible that xt = t and yt = t: Hence either x = xtx or y = yty andthus either x 2 xtS [ ytS or y 2 xtS [ ytS:58



3.3 Weak homoatnessHere we characterize monoids over which all (all torsion free, all princi-pally weakly at, all principally weakly homoat) right Rees factor actsare weakly homoat. As a special case we �nd a description of the idem-potent monoids over which all (all principally weakly homoat) right Reesfactor acts are weakly homoat, and over which all cyclic right S-acts areweakly homoat.We start again with Rees factor acts.Proposition 3.14 All principally weakly homoat right Rees factor actsof S are weakly homoat if and only if S is right reversible and every leftstabilizing and left annihilating right ideal of S is strongly left annihilating.Proof. Necessity. If all principally weakly homoat right Rees factoracts are weakly homoat then the one-element right S-act �S is also weaklyhomoat and hence weakly at. By Corollary 1.12 S is right reversible.Suppose that K is a left stabilizing and left annihilating right ideal of S:Then S=K is principally weakly homoat by Lemma 2.8. By assumptionS=K is weakly homoat. Hence K is strongly left annihilating by Lemma2.13.Su�ciency. Suppose S=K is principally weakly homoat. Then K isleft stabilizing and left annihilating by Lemma 2.8. Using assumption andLemma 2.13 we see that S=K is weakly homoat.Corollary 3.15 If S is a commutative monoid then all principally weaklyhomoat right Rees factor acts of S are weakly homoat.Proof. Let K be a left stabilizing and left annihilating right ideal of Sand f : S(Ss [ St)! SS a homomorphism of left S-acts with s; t 2 S nKand f(s); f(t) 2 K (note that s; t 62 K implies 1 62 K). Then using leftannihilation and commutativity we obtainf(s) = tf(s) = f(ts) = f(st) = sf(t) = f(t):Thus K is strongly left annihilating and S=K is weakly homoat by Lemma2.13, because a commutative monoid is right reversible.Example 12 Consider a semilattice S = f1; e; f; 0g with ef = 0 (as inexamples 1 and 10). Since S is commutative, all principally weakly homoatright Rees factor acts of S are weakly homoat by Corollary 3.15. But notall principally weakly at right Rees factor acts are weakly homoat byProposition 3.6, because eS = fe; 0g is a left stabilizing right ideal whichis not left annihilating. 59



Corollary 3.16 The following assertions are equivalent for a monoid S:1. All principally weakly at right Rees factor acts of S are weakly ho-moat.2. S is right reversible and every left stabilizing right ideal of S is stronglyleft annihilating.3. S is right reversible and for all x; y 2 S, for all homomorphismsf : S(Sx [ Sy) ! SS such that x0 = f(x) 6= f(y) = y0; and for allx1; y1; x2; y2; : : : 2 S such that(8i 2 N0)(xi+1xi = xi) and (8i 2 N0)(yi+1yi = yi);there exist p 2 fx0; x1; : : :g [ fy0; y1; : : :g and z 2 S such that eitherx = pz or y = pz:Proof. Equivalence of 1 and 2 follows from Propositions 3.6 and 3.14.2. ) 3. Suppose thatx0 = f(x) ^ (8i 2 N0)(xi+1xi = xi) ^ y0 = f(y) ^ (8i 2 N0)(yi+1yi = yi)for some x; y 2 S, a homomorphism f : S(Sx [ Sy) ! SS such thatf(x) 6= f(y); and elements x1; y1; x2; y2; : : : 2 S: Consider a right idealK = 0@ [i2N0xiS1A[0@ [i2N0 yiS1A :For every k 2 K there exists l 2 K such that lk = k; that is K is left stabi-lizing. By assumption K is strongly left annihilating. Since f(x); f(y) 2 Kand f(x) 6= f(y); either x 2 K or y 2 K: Thus either x = pz or y = pz forsome p 2 fx0; x1; : : :g [ fy0; y1; : : :g and z 2 S:3. ) 1. Let S=K be principally weakly at. Then K is left stabilizingby Proposition 1.11. We have to show that K is strongly left annihilating.Suppose that x0 = f(x) 2 K; y0 = f(y) 2 K for some x; y 2 S n K anda homomorphism f : S(Sx [ Sy) ! SS: Suppose that x0 6= y0: Since Kis left stabilizing, there exist x1; y1; x2; y2; : : : 2 K such that xi+1xi = xiand yi+1yi = yi for every nonnegative integer i: By assumption there existp 2 fx0; x1; : : :g [ fy0; y1; : : :g and z 2 S such that either x = pz or y = pz:Hence either x 2 K or y 2 K; a contradiction. So we must have the equalityf(x) = f(y); that means K is strongly left annihilating.Example 13 Consider again the monoid S = f1; s; t; x; y; 0g from Exam-ple 2. We saw that K = f0; x; yg is a left stabilizing right ideal which is60



not strongly left annihilating. Hence not all principally weakly at rightRees factor acts are weakly homoat by Corollary 3.16.Let us show that still all principally weakly at right Rees factor actsare principally weakly homoat. Right ideals of S are S, f0g;sS = tS = fs; t; x; y; 0g; xS = fx; 0g; ys = fy; 0g and fx; y; 0g: Clearly, the�rst three right ideals are left annihilating and it was shown in Example 2that fx; y; 0g is left annihilating. Suppose that uz; vz 2 fx; 0g; z 2 S;u; v 2 S n fx; 0g: Then either uz = vz = x, or z = 0. In the second case weobtain uz = vz = 0: Hence fx; 0g, and similarly fy; 0g; is left annihilating,too. Thus all right ideals of S are left annihilating and so all principallyweakly at right Rees factor acts of S are principally weakly homoat byProposition 3.6.The proofs of the following two corollaries are similar to the proofs ofCorollaries 3.7 and 3.8.Corollary 3.17 All torsion free right Rees factor acts of a monoid S areweakly homoat if and only if S is left almost regular and for all x; y 2 Sand all homomorphisms f : S(Sx [ Sy)! SSf(x) 6= f(y)) (x 2 KTF (f(x); f(y))_ y 2 KTF (f(x); f(y))):Corollary 3.18 All right Rees factor acts of a monoid S are weakly ho-moat if and only if S is regular, right reversible and for all x; y 2 S andall homomorphisms f : S(Sx[ Sy)! SSf(x) 6= f(y)) (x 2 f(x)S [ f(y)S _ y 2 f(x)S [ f(y)S):Our next aim is to �nd out when all cyclic right acts are weakly homoat.Proposition 3.19 All cyclic right S-acts are weakly homoat if and onlyif S is regular and(8x; y; t 2 S)(9u; v 2 S)(ut = vt ^ u�(xt; yt)x^ v�(xt; yt)y)and for all s; t 2 S and all homomorphisms f : S(Ss [ St)! SS there existu; v; z; w 2 S such that(uf(s) = vf(t) ^ us�s ^ vt�t)_(uf(s) = vf(s) ^ u�1 ^ z�v ^ zs = wt�t)_(uf(t) = vf(t) ^ v�1 ^ w�u ^ zs = wt�s)where � = �(f(s); f(t)): 61



Proof. Necessity. Proposition 3.9 implies that S is regular and the�rst condition holds. Take s; t 2 S and a homomorphismf : S(Ss[ St)! S: By assumption S=�(f(s); f(t)) is weakly homoat andhence by Lemma 2.12 there exist u; v; p1; p2; q1; q2 2 S such that eitherf(us) = f(vt) and [1] = [p1][q1] = [u] p1s = q1s[1] = [p2][q2] = [v] p2t = q2t;or f(us) = f(vs) and [1] = [p1][q1] = [p2] p1t = q1t[q2] = [v] p2t = q2s[1] = [u];or f(ut) = f(vt) and [1] = [p1][q1] = [p2] p1s = q1s[q2] = [u] p2s = q2t[1] = [v]:In the �rst case us�(f(s); f(t))s and vt�(f(s); f(t))t; in the second caseq2s = p2t�(f(s); f(t))t and in the third case p2s = q2t�(f(s); f(t))s:Su�ciency. Let � be a right congruence on a monoid S and letf(s)�f(t) for s; t 2 S and a homomorphism f : S(Ss[ St) ! SS: Byassumption there exist u; v; z; w 2 S such that(uf(s) = vf(t) ^ us�s ^ vt�t)_(uf(s) = vf(s) ^ u�1 ^ z�v ^ zs = wt�t)_(uf(t) = vf(t) ^ v�1 ^ w�u ^ zs = wt�s)where � = �(f(s); f(t)) � �:In the �rst case for u; 1; s there exist q1; p1 2 S such that q1s = p1s;q1�(us; s)u and p1�(us; s)1. Now us�s implies �(us; s) � � � �; thus q1�uand p1�1. Analogously using vt�t we get q2; p2 2 S such that q2�v; p2�1and p2t = q2t:In the second case using wt�t we get q1; p1 2 S such that q1�w; p1�1and p1t = q1t:In the third case zs�s implies the existence of q1; p1 2 S such that q1�z;p1�1 and p1s = q1s:Thus S=� is weakly homoat by Lemma 2.12.62



Finally, we consider the case of idempotent monoids.Proposition 3.20 Let S be an idempotent monoid. All principally weaklyhomoat right Rees factor acts of S are weakly homoat if and only ifS is left collapsible and every left annihilating right ideal is strongly leftannihilating.Proof. Necessity. By Proposition 3.14 S is right reversible. It is easyto see that an idempotent monoid is right reversible if and only if it is leftcollapsible. Suppose that K is a left annihilating right ideal. Since S is anidempotent monoid, K is left stabilizing. Again by Proposition 3.14 K isstrongly left annihilating.Su�ciency. Let S=K be principally weakly homoat. Then K is leftannihilating by Lemma 2.8. By assumption K is strongly left annihilating.Hence S=K is weakly homoat by Lemma 2.13.Corollary 3.21 Let S be an idempotent monoid. All right Rees factor actsof S are weakly homoat if and only if S is left collapsible and(8x; y 2 S)(8s; t 2 S n (xS [ yS))(x 6= y ^ sx = x ^ ty = y ) (9u; v 2 S)(us = vt ^ ux 6= vy)):Proof. Necessity. Left collapsibility follows from Proposition 3.20.Suppose that(9x; y 2 S)(9s; t 2 S n (xS [ yS))(x 6= y ^ sx = x ^ ty = y ^ (8u; v 2 S)(us 6= vt _ ux = vy)):Denote K = xS [ yS: By assumption S=K is weakly homoat and henceK is strongly left annihilating. De�ne a mapping f : S(Ss [ St)! SS byf(us) = ux;f(ut) = uy;u 2 S: If us = vs; u; v 2 S then sx = x implies ux = vx: Analogouslyut = vt, u; v 2 S implies uy = vy: If us = vt; u; v 2 S then ux = vy: Thusf is well de�ned and clearly it is a homomorphism of left S-acts. Nows; t 2 S n K; f(s); f(t) 2 K; but f(s) 6= f(t): So K is not strongly leftannihilating, a contradiction.Su�ciency. Let K be a right ideal of S: Since S is idempotent, Kis left stabilizing. Suppose that f(s); f(t) 2 K for some s; t 2 S nK and ahomomorphism f : S(Ss [ St)! SS: Denote x = f(s) and y = f(t): Thens; t 2 S n(xS[yS); sx = x and ty = y: Suppose x 6= y: Then by assumptionthere exist u; v 2 S such that us = vt; but ux 6= vy; that is, f(us) 6= f(vt);a contradiction. Consequently x = y; or f(s) = f(t): This means that K isstrongly left annihilating. By Lemma 2.13 S=K is weakly homoat.63



Recall that the monoid S in Example 12 was an idempotent monoid. Thus,Corollary 3.21 describes a strictly smaller class of monoids than Proposi-tion 3.20.It also can be seen that Corollary 3.21 describes a strictly smaller classof monoids than Proposition 3.13. Indeed, if T is a right zero semigroupwith two or more elements and S = T 1; then for all e; f 2 S either ef = f(in the case f 6= 1) or e = efe (in the case f = 1). On the other hand, thecondition of Corollary 3.21 is not satis�ed, because S is not a left collapsiblemonoid.Now let us consider cyclic acts of idempotent monoids. First let us recallsome facts about idempotent monoids.An idempotent semigroup is also called a band. A band S is calledrectangular, if efe = e for all e; f 2 S: Every rectangular band is isomorphicto a cartesian product I � �; with multiplication given by(i; �)(j; �) = (i; �);i; j 2 I , �; � 2 �: Every band S is a semilattice of rectangular bands (see,e.g. [10]), that is S = [2�Swhere each S � S is a rectangular band,  6= � implies S \ S� = �; � isa lower semilattice and SS� � S�for all ; � 2 � (we use the notation of multiplication for the operationof this semilattice). Since an idempotent monoid is a band, it is also asemilattice of rectangular bands.For a special case of rectangular bands with identity adjoined we havethe following result.Lemma 3.22 Let S be a rectangular band with identity adjoined. If allprincipally weakly homoat cyclic right S-acts are weakly homoat then Sis a left zero semigroup with identity adjoined.Proof. Let S = (I � �)1 and let all principally weakly homoat cyclicright S-acts be weakly homoat. Suppose that j�j � 2: Choose �; � 2 �such that � 6= � and an arbitrary element i 2 I: Denote s = (i; �) andt = (i; �): Let us show that�(s; t) = f(s; t); (t; s)g [ f(z; z) j z 2 Sg:64



The converse being obvious let us show that �(s; t) is contained in the setwhich is on the right-hand side of the last equality. For this, suppose that(x; y) 2 �(s; t); x; y 2 S: By Lemma 1.15 either x = y or there exist anatural number n and elements y1; : : : ; yn; s1; : : : ; sn; t1; : : : ; tn 2 S suchthat x = s1y1 t2y2 = s3y3t1y1 = s2y2 : : : tnyn = y;where fsi; tig = fs; tg for every i 2 f1; : : : ; ng. Let this sequence of equal-ities be the shortest. If none of the elements y1; : : : ; yn is equal to 1 thenusing the multiplication rule in I � � we obtainx = s1y1 = t1y1 = : : := tnyn = y:Otherwise let j be the smallest index such that yj = 1: If j � 2 thenx = tj�1yj�1 = sjyj = sj and the sequence can be shortened. If j = 1 thenx = s1y1 = s1 and t1 = t1y1 = s2y2: If y2 = 1 then t1 = s2 and s1 = t2;hence x = s1 = t2 = t2y2: If y2 6= 1 then t1 = s2y2 = t2y2 = s3y3: Sowhenever n � 2; the sequence can be shortened. Consequently n = 1; thatis x = s1 and y = t1: Therefore either (x; y) = (s; t) or (x; y) = (t; s):Now let us show that S=�(s; t) is principally weakly homoat. Supposethat xp�(s; t)yp for some x; y; p 2 S: If p = 1 then xp = xp; x�(s; t)xand x�(s; t)y; hence S=� is principally weakly homoat by Lemma 2.7. Ifp 6= 1 then (xp; yp) 6= (s; t) and (xp; yp) 6= (t; s), hence xp = yp and, again,S=� is principally weakly homoat by Lemma 2.7. By assumption S=� isweakly homoat and hence there exist u; v 2 S such that us = vt; but thiscontradicts the choice of s and t. Thus j�j = 1 which means that I � � isa left zero band.It will turn out soon (see Corollary 3.24) that all cyclic right S-acts over aleft zero band with identity adjoined are weakly homoat.If S = S2� S is a chain � of semigroups S then it is called a leftannihilating chain if(8; � 2 �)(8s 2 S)(8t 2 S�)( > � ) st = t):Similarly right annihilating chains of semigroups are de�ned. An annihi-lating chain is left and right annihilating chain.A band S is called left regular if efe = ef for all e; f 2 S: For acharacterization of idempotent monoids over which all cyclic right acts areweakly homoat we need the following theorem.Theorem 3.23 ([5]) Let S be an idempotent monoid. All cyclic rightS-acts are weakly at if and only if S is a left regular band.65



Corollary 3.24 The following assertions are equivalent for an idempotentmonoid S:1. All cyclic right S-acts are weakly homoat.2. (8e; f 2 S)((ef = f _ e = efe) ^ efe = ef):3. S is an annihilating chain of left zero bands.Proof. 1. ) 2. This follows immediately from Proposition 3.13 andTheorem 3.23, because weak homoatness implies weak atness.2. ) 3. Let S = S2� S be a representation of S as a semilattice � ofrectangular bands S . Take any ; � 2 � and e 2 S ; f 2 S�: By assumptioneither ef = f or e = efe: In the �rst case  � � and in the second case � �: Thus � is a chain. Let e 2 S ; f 2 S�; ; � 2 �;  > �: Then e = efeis impossible, thus ef = f and S is a left annihilating chain. Using leftregularity we get f = ef = efe: Therefore f = fe; that is S is a rightannihilating chain, too. Hence S is an annihilating chain of rectangularbands. Further, take e; f 2 S ;  2 �: If ef = f; then using rectangularityof S and left regularity of S we obtaine = efe = ef = f:Otherwise, e = efe = ef:Thus, S ;  2 � is a left zero band and S is an annihilating chain of leftzero bands.3. ) 1. Let S = S2� S be an annihilating chain � of left zerobands S and � a right congruence on S: We use Lemma 2.12 to check thatS=� is weakly homoat. Suppose that f(s)�f(t) for some s; t 2 S and ahomomorphism f : S(Ss [ St) ! SS: Let s 2 S�1; t 2 S�2 ; f(s) 2 S�1 ;f(t) 2 S�2 : Then �1 � �1; because sf(s) = f(s); and, analogously, �2 � �2:Since � is a chain, without loss of generality we may assume that �1 � �2:This means that t = ts. If �1 = �1 thenf(s) = sf(s) = sand, since �1 = �1 � �2;f(t) = f(ts) = tf(s) = t:66



Thus tf(s) = tf(t) and [1] = [1][s] = [t] 1s = ss[1] = [1][t] = [t] 1t = tt:Now suppose that �1 > �1 and consider the following cases.a) �1 � �2: Then, as before, f(t) = f(ts) = tf(s) = t: Consequently1f(s) = f(s)f(s) and [1] = [1][t] = [t] 1t = tt[t] = [f(s)] tt = ts[1] = [1]:b) �2 > �1: Then f(s) = tf(s) = f(ts) = f(t): Hence 1f(s) = 1f(t)and [1] = [1][1] = [1] 1s = 1s[1] = [1][1] = [1] 1t = 1t:This means that S=� is weakly homoat.For arbitrary right acts over an idempotent monoid we have the followingresult.Proposition 3.25 The following assertions are equivalent for an idempo-tent monoid S:1. All right S-acts are weakly homoat.2. All right S-acts are principally weakly homoat.3. S = f1g:Proof. 1. ) 2. is obvious.2. ) 3. By Corollary 3.12 S is a group. The only idempotent group isthe trivial group S = f1g:3. ) 1. If S = f1g then all right S-acts are even free.67



3.4 Condition (P)Here we give a characterization of monoids over which all right Rees factoracts with some weaker property than condition (P) have condition (P).Proposition 3.26 All weakly homoat right Rees factor acts of S satisfycondition (P) if and only if S is not right reversible or no nontrivial rightideal of S is left stabilizing and strongly left annihilating.Proof. Necessity. Suppose that S is right reversible and K is a non-trivial left stabilizing and strongly left annihilating right ideal. Then S=Kis weakly homoat by Lemma 2.13. By assumption S=K must satisfy con-dition (P), but this means that K is trivial by Proposition 1.11, a contra-diction.Su�ciency. Let S=K be weakly homoat. Then S is right reversibleby Lemma 2.13. If K = S, that is S=K �= �S , then S=K satis�es condition(P) by Lemma 2.14. If jKj = 1 then S=K ' S is free and hence satis�escondition (P). Suppose that K is a nontrivial right ideal. By assumptionK is either not left stabilizing or not strongly left annihilating. Thus S=Kis not weakly homoat by Lemma 2.13, a contradiction.Corollary 3.27 All principally weakly homoat right Rees factor acts ofS satisfy condition (P) if and only if S is right reversible and no nontrivialright ideal of S is left stabilizing and left annihilating.Proof. Necessity. By Proposition 3.14 S is right reversible. SupposeK is a nontrivial left stabilizing and left annihilating ideal of S: Then S=Kis principally weakly homoat by Lemma 2.8. By assumption S=K satis�escondition (P), so K must be trivial, a contradiction.Su�ciency. Let S=K be principally weakly homoat. Then K is leftstabilizing and left annihilating. By assumption K must be trivial. HenceS=K satis�es condition (P) by Proposition 1.11.The following is a corollary of Corollary 3.27 and Proposition 3.6.Corollary 3.28 ([20]) All principally weakly at right Rees factor acts ofS satisfy condition (P) if and only if S is right reversible and no nontrivialright ideal is left stabilizing.Corollary 3.29 All torsion free right S-acts satisfy condition (P) if andonly if S is right cancellative monoid with a zero adjoined, or right can-cellative and right reversible. 68



Proof. Necessity. By Corollary 3.28 S is right reversible. Take s 2 S:Then the right Rees factor act S=KTF (s) is torsion free. By assumptionS=KTF (s) satis�es condition (P). By Proposition 1.11 jKTF (s)j = 1 orKTF (s) = S is right reversible. In the �rst case s is a left zero, becausesS � KTF (s). In the second case 1 2 KTF (s) implies that s is rightcancellable as in the proof of Proposition 3.10. So every element of S iseither a left zero or right cancellable. Let K be the set of all left zeros ofS: If K is nonempty then it is a left stabilizing right ideal and by Corollary3.28 it must be trivial. Thus S has at most one left zero which must thenbe a zero. Since the product of two right cancellable elements is rightcancellable, we have S = C0 in the case if S has a zero 0.Su�ciency. Let S be a right cancellative monoid with a zero adjoined,or right cancellative and right reversible monoid. Suppose that S=K istorsion free for a right ideal K of S: If jKj = 1 then S=K is even free.Otherwise K contains a right cancellable element c: Hence 1c 2 K impliesby torsion freeness of S=K that 1 2 K; that is K = S: Thus S=K satis�esagain condition (P).Since a regular right cancellable element of a monoid must be right invert-ible, Corollaries 3.18 and 3.29 imply the following result.Corollary 3.30 ([20]) All right Rees factor acts of S satisfy condition (P)if and only if S is a group or a group with a zero adjoined.Now let us consider cyclic acts.For given s; t 2 S let us de�ne a sequence of subsets of S � SF1 = f(x; y) j (9c 2 S)(c is right cancellable and (xc; yc) 2 �(s; t))g ;Fi+1 = f(x; y) j (9c 2 S)(c is right cancellable and (xc; yc) 2 �(Fi))gand a binary relation on S�TF (s; t) = 1[i=1�(Fi):Clearly, � is a right congruence on S:Lemma 3.31 All cyclic torsion free right S-acts satisfy condition (P) ifand only if(8s; t 2 S)(9u; v 2 S)(us = vt ^ u�TF (s; t)1^ v�TF (s; t)1):69



Proof. Necessity Suppose (xc; yc) 2 �TF (s; t) for x; y; c 2 S wherec is right cancellable. Then there exists a natural number k such that(xc; yc) 2 �(Fk): By the de�nition of Fk+1 we have (x; y) 2 Fk+1 and hence(x; y) 2 �(Fk+1) � �TF (s; t): This means that S=�TF (s; t) is torsion free.The rest follows now from Proposition 1.10, because S=�TF(s; t) has tosatisfy condition (P) and (s; t) 2 �TF (s; t).Su�ciency. Let � be a right congruence on S and s�t; s; t 2 S: Then�(s; t) � �: If (xc; yc) 2 �(s; t) � �; x; y; c 2 S; c is right cancellable, thenusing torsion freeness of S=� we obtain (x; y) 2 �: Hence F1 � � and thus�(F1) � � because �(F1) is the smallest right congruence containing F1:Assume that �(Fi) � �: Suppose that (xc; yc) 2 �(Fi) � �; x; y; c 2 S; c isright cancellable. Then using torsion freeness of S=� we obtain (x; y) 2 �:Hence Fi+1 � � and thus �(Fi+1) � �: So we have shown that �TF (s; t) � �:By assumption there exist u; v 2 S such that us = vt; u�TF (s; t)1 andv�TF (s; t)1: But then us = vt; u�1 and v�1; which means that S=� satis�escondition (P). 3.5 Weak pullback atnessHere we try to answer the questions \When are all right Rees factor actswith property X weakly pullback at?".Proposition 3.32 All right Rees factor acts of S satisfying condition (P)are weakly pullback at if and only if S is not right reversible or S is weaklyleft collapsible.Proof. Necessity. Suppose that S is right reversible. Then the one-element right S-act �S satis�es condition (P). By assumption �S is weaklypullback at and hence S is weakly left collapsible by Corollary 2.20.Su�ciency. Let S=K satisfy condition (P). By Proposition 1.11either jKj = 1 or K = S is right reversible. In the �rst case S=K is freeand hence weakly pullback at. In the second case we know that S isweakly left collapsible by assumption. Hence S=K is weakly pullback atby Lemma 2.19.Using Propositions 3.26 and 3.32 we get the following.Corollary 3.33 All weakly homoat right Rees factor acts of S are weaklypullback at if and only if S is not right reversible or S is weakly leftcollapsible and no nontrivial right ideal is left stabilizing and strongly leftannihilating.The next result comes from Corollaries 3.27 and 3.33.70



Corollary 3.34 All principally weakly homoat right Rees factor acts ofS are weakly pullback at if and only if S is right reversible and weaklyleft collapsible and no nontrivial right ideal of S is left stabilizing and leftannihilating.Corollaries 3.28 and 3.34 yield the following corrollary.Corollary 3.35 All principally weakly at right Rees factor acts of S areweakly pullback at if and only if S is right reversible and weakly left col-lapsible and no nontrivial right ideal of S is left stabilizing.Corollary 3.36 All torsion free right Rees factor acts of S are weaklypullback at if and only if S is a right cancellative monoid with a zeroadjoined, or S is right cancellative and right reversible.Proof. Necessity follows from Corollary 3.29.Su�ciency. By Corollary 3.29 all torsion free right Rees factor actssatisfy condition (P). By Proposition 3.32 it is su�cient to show that Sis weakly left collapsible. Suppose that sz = s0z for some s; s0; z 2 S:If S contains zero then 0s = 0s0 and we are done. Otherwise S is rightcancellative and hence sz = s0z implies s = s0 and we have 1s = 1s0: ThusS is weakly left collapsible.Corollary 3.37 All right Rees factor acts of S are weakly pullback at ifand only if S is a group or a group with a zero adjoined.Proof. Necessity follows from Corollary 3.30.Su�ciency. By Corollary 3.30 all right Rees factor acts satisfy Condi-tion (P). The rest follows from Proposition 3.32 because groups and groupswith a zero adjoined are weakly left collapsible.To get the following corollary for cyclic acts we need a proposition.Proposition 3.38 ([21]) All cyclic right S-acts satisfying condition (P)are weakly pullback at if and only if every right reversible submonoid of Sis weakly left collapsible.Corollary 3.39 All cyclic right S-acts are weakly pullback at if and onlyif S is a group or S = f0; 1g.Proof. Necessity. By Corollary 3.37 S is a group or a group with azero adjoined. Suppose that S = G0 where G is a nontrivial group. ThenG is a right reversible submonoid of S which is not weakly left collapsible.71



Hence all cyclic right S acts cannot be weakly pullback at by Proposition3.38.Su�ciency. If S is a group then all S-acts are weakly pullback at byProposition 3.12. If S = f0; 1g then all cyclic acts are pullback at (andhence weakly pullback at) by Theorem 3.1 of [23].3.6 Pullback atnessHere we try to answer the questions \When are all right Rees factor actswith property X pullback at?". We also study cyclic acts over idempotentmonoids.Proposition 3.40 All weakly pullback at right Rees factor acts of S arepullback at if and only if S is not a right reversible weakly left collapsiblemonoid or S is left collapsibile.Proof. Necessity. Suppose that S is a right reversible and weaklyleft collapsible monoid. Then by Corollary 2.20 the one-element right S-act�S is weakly pullback at. By assumption �S is pullback at and hence Sis left collapsible by Corollary 1.12.Su�ciency. Let S=K be a weakly pullback at right Rees factor act.By Lemma 2.19 either jKj = 1 or K = S is right reversible and weaklyleft collapsible. In the �rst case S=K is free and hence pullback at. Inthe second case S is left collapsible by assumption. Hence S=K �= �S ispullback at by Corollary 1.12.The following six results are direct consequences of Proposition 3.40, Propo-sition 3.32 and Corollaries 3.33, 3.34, 3.35, 3.36 and 3.37.Corollary 3.41 ([20]) All right Rees factor acts of S satisfying condition(P) are pullback at if and only if S is not right reversible or S is leftcollapsible.Corollary 3.42 All weakly homoat right Rees factor acts of S are pull-back at if and only if S is not right reversible or S is left collapsible and nonontrivial right ideal of S is left stabilizing and strongly left annihilating.Corollary 3.43 All principally weakly homoat right Rees factor acts ofS are pullback at if and only if S is left collapsible and no nontrivial rightideal of S is left stabilizing and left annihilating.Corollary 3.44 ([20]) All principally weakly at right Rees factor acts ofS are pullback at if and only if S is left collapsible and no nontrivial rightideal of S is left stabilizing. 72



Corollary 3.45 All torsion free right Rees factor acts of S are pullbackat if and only if S is a right cancellative monoid with a zero adjoined, orS is right cancellative and left collapsible.Corollary 3.46 ([20]) All right Rees factor acts of S are pullback at ifand only if S is a group with a zero adjoined or S = f1g.Let us consider again a special case of idempotent monoids. Observe thatif S is an idempotent monoid then by Proposition 2.13 of [1] a right S-actis pullback at if and only if it satis�es condition (P).Lemma 3.47 Let S be an idempotent monoid. If all weakly homoat cyclicright S-acts are pullback at then S is a semilattice of right zero bands.Proof. Let S = S2� S be a semilattice � of rectangular bands S andlet all weakly homoat cyclic right S-acts be pullback at. Suppose thatS = I � �;  2 �; 1 62 S and jI j � 2: Choose i; j 2 I; i 6= j and � 2 �:Denote s = (i; �); t = (j; �) and � = �(s; t): Then st = s and ts = t:First, let us show that S=� is weakly homoat. Suppose that f(s)�f(t)for s; t 2 S and a homomorphism f : S(Ss [ St) ! SS: By Lemma 1.15either f(s) = f(t) or there exist a natural number n and elements y1; : : : ; yn;s1; : : : ; sn; t1; : : : ; tn 2 S such thatf(s) = s1y1 t2y2 = s3y3t1y1 = s2y2 : : : tnyn = f(t);where fsi; tig = fs; tg for every i 2 f1; : : : ; ng. Multiplying all these equal-ities by s on the left and using the equality st = s we obtainsf(s) = ss1y1 = sy1 = st1y1 = ss2y2 = sy2= st2y2 = : : : = stnyn = sf(t):Moreover, [1] = [1][s] = [s] 1s = ss[1] = [1][t] = [s] 1t = tt;i.e. S=� is weakly homoat.By assumption S=� is pullback at. Therefore by Proposition 1.10 s�timplies the existence of u 2 S such that u�1 and us = ut: Since s; t beingnonidentity idempotents are not right invertible, [1]� = f1g: Consequentlyu = 1 and s = t; a contradiction. Thus jI j = 1; that is, S is a right zeroband. 73



Lemma 3.48 If S is a right zero band with an identity adjoined then allweakly homoat cyclic right S-acts are pullback at.Proof. Let S = T 1 where T is a right zero band and let � be a rightcongruence on S such that S=� is weakly homoat and suppose that s�t;s; t 2 S: If s = 1 then ts = tt and t�1: Analogous argument applies if t = 1:If s; t 2 T then using weak homoatness of S=� (taking f the inclusionof S(Ss [ St) into SS) we get the elements u; v; p1; p2; q1; q2 2 S such thateither us = vt and [1] = [p1][q1] = [u] p1s = q1s[1] = [p2][q2] = [v] p2t = q2t;or us = vs and [1] = [p1][q1] = [p2] p1t = q1t[q2] = [v] p2t = q2s[1] = [u];or ut = vt and [1] = [p1][q1] = [p2] p1s = q1s[q2] = [u] p2s = q2t[1] = [v]:Since T is a right zero band, we have s = t in any case. Thus 1s = 1t and1�1 yield that S=� is pullback at.3.7 ProjectivityHere we try to answer the questions \When are all right Rees factor actswith property X projective?".Proposition 3.49 ([20]) All pullback at right Rees factor acts of S areprojective if and only if left S is not left collapsible or S has a left zero.The following seven results are direct consequences of Proposition 3.49,Proposition 3.40 and corollaries 3.41, 3.42, 3.43, 3.44, 3.45 and 3.46.Corollary 3.50 All weakly pullback at right Rees factor acts of S areprojective if and only if S is not a right reversible weakly left collapsiblemonoid or S has a left zero.Corollary 3.51 ([20]) All right Rees factor acts of S satisfying condition(P) are projective if and only if S is not right reversible or S has a left zero.74



Corollary 3.52 All weakly homoat right Rees factor acts of S are pro-jective if and only if S is not right reversible or S has a left zero and nonontrivial right ideal of S is left stabilizing and strongly left annihilating.Corollary 3.53 All principally weakly homoat right Rees factor acts ofS are projective if and only if S has a left zero and no nontrivial right idealof S is left stabilizing and left annihilating.Corollary 3.54 ([20]) All principally weakly at right Rees factor acts ofS are projective if and only if S has a zero and no nontrivial right ideal ofS is left stabilizing.Note that the existence of a zero follows from the fact that the subsetconsisting of all left zeros of S is a left stabilizing right ideal.Corollary 3.55 All torsion free right Rees factor acts of S are projective ifand only if S is a right cancellative monoid with a zero adjoined or S = f1g.Corollary 3.56 ([20]) All right Rees factor acts of S are projective if andonly if S is a group with a zero adjoined or S = f1g.The following results concern idempotent monoids.Proposition 3.57 The following assertions are equivalent for an idempo-tent monoid S:1. All weakly homoat right Rees factor acts of S are projective.2. All weakly homoat right Rees factor acts of S are pullback at.3. S is not left collapsible or S = f1g or S = f0; 1g:Proof. 1. ) 2. is obvious.2. ) 3. Let S be left collapsible. Denote K = S n f1g: If K = �then S = f1g: Otherwise K is a left stabilizing strongly left annihilatingright ideal. Hence the right Rees factor act S=K is weakly homoat. Byassumption S=K is pullback at. Consequently jKj = 1 by Proposition1.11. Thus S = f0; 1g:3. ) 1. Let S=K be weakly homoat. Then S is left collapsible andhence by assumption S = f1g or S = f0; 1g: By Corollary 3.56 S=K isprojective. 75



For the next corollary we need the notion of right perfect monoids. Amonoid is called right perfect [11] if every right S-act has a projective cover.It was proved in [7] that a monoid is right perfect if and only if all pullbackat right acts over it are projective. It was shown in [18] that a monoid Sis right perfect if and only if S satis�es the conditions (A) and (K) below:(A) every right S-act satis�es the ascending chain condition for cyclicsubacts;(K) if P � S is a left collapsible submonoid then P contains a left zero.Recall that if S is an idempotent monoid then every right S-act satis-fying condition (P) is pullback at.Corollary 3.58 The following assertions are equivalent for an idempotentmonoid S:1. All principally weakly homoat right S-acts are projective.2. All principally weakly homoat right S-acts are pullback at.3. All principally weakly homoat cyclic right S-acts are projective.4. All principally weakly homoat cyclic right S-acts are pullback at.5. All principally weakly homoat right Rees factor acts of S are projec-tive.6. All principally weakly homoat right Rees factor acts of S are pullbackat.7. S = f1g or S = f0; 1g:Proof. Implications 1. ) 3. ) 5., 2. ) 4. ) 6., 1. ) 2., 3. ) 4. and5. ) 6. are obvious.6. ) 7. By Proposition 3.20 S is left collapsible. Hence by Proposition3.57 S = f1g or S = f0; 1g:7. ) 1. For S = f1g all right acts are projective. Consider S = f0; 1g.Let AS be a principally weakly homoat right S-act. We shall show thatAS satis�es condition (P) (and hence is pullback at). Suppose as = a0s0,a; a0 2 AS ; s; s0 2 S: If s = s0 then we can simply apply principal weakhomoatness. If, e.g., s = 0 and s0 = 1 then 1 � 0 = 0 � 1; a = a1 anda0 = a0: Hence AS satis�es condition (P) and is pullback at.Let us show that S is a right perfect monoid. Clearly, S satis�es con-dition (K). Suppose that b1S � b2S � b3S � : : :76



is an ascending chain of cyclic subacts of a right S-act BS : Then there exists; t 2 S such that b1 = b2s and b2 = b3t: If s = 1 or t = 1 then we are done.If s = t = 0 then b1 = b20 = (b30)0 = b30 = b2: Hence S satis�es condition(A), too. Thus S is a right perfect monoid, which means that AS is alsoprojective. 3.8 FreenessHere we try to answer the questions \When are all right Rees factor actswith property X free?".Proposition 3.59 ([20]) All pullback at right Rees factor acts of S arefree if and only if S is not left collapsible or S = f1g.Proposition 3.59 and Corollary 3.50 imply the following result.Corollary 3.60 All weakly pullback at right Rees factor acts of S are freeif and only if S is not a right reversible weakly left collapsible monoid orS = f1g.Corollary 3.61 The following assertions are equivalent for a monoid S:1. All weakly homoat Rees factor acts of S are free.2. All right Rees factor acts of S satisfying condition (P) are free.3. S is not right reversible or S = f1g.Proof. Obviously 1. ) 2. The equivalence of conditions 2. and 3. wasproved in [20]. Implication 3. ) 1. follows from Proposition 3.26 by using2.Using Corollaries 3.53 and 3.61 we obtain the following corollary.Corollary 3.62 The following assertions are equivalent for a monoid S:1. All principally weakly homoat right Rees factor acts of S are free.2. All principally weakly at right Rees factor acts of S are free.3. All torsion free right Rees factor acts of S are free.4. All right Rees factor acts of S are free.5. S = f1g. 77



Note that equivalence of conditions 2, 3, 4 and 5 of this corollary was provedin [20].To prove the following corollary we need a proposition.Proposition 3.63 ([24]) All pullback at right S-acts are free if and onlyif S is a group.This proposition together with Corollary 3.60 (note that a group is bothright reversible and weakly left collapsible) imply the following result forarbitrary acts.Corollary 3.64 The following assertions are equivalent for a monoid S:1. All right S-acts are free.2. All torsion free right S-acts are free.3. All principally weakly at right S-acts are free.4. All principally weakly homoat right S-acts are free.5. All weakly homoat right S-acts are free.6. All right S-acts satisfying condition (P) are free.7. All weakly pullback at right S-acts are free.8. S = f1g. 3.9 SynopsisFinally we present our results in the form of tables. We tabulate our resultsobtained for Rees factor acts and arbitrary acts and for Rees factor acts,cyclic acts and arbitrary acts over idempotent monoids.Rows and columns of tables are labelled with atness properties of acts,the abbreviations used are the same as for Scheme 2. These properties arearranged in order of decreasing strength. In the cell at the intersection ofrow labelled X and column labelled Y is the class of all monoids such thatall right acts (or cyclic right acts or right Rees factor acts) with propertyX over them have property Y. Since any property in any table implies theproperty to the right of it or below it, we see that any class of monoids iscontained in every class lying above it or to the right of it. Actually theclass of monoids in a cell is the intersection of the classes above it and tothe right of it. So the diagonal cells play a crucial role, because if we knewthem we could, in principle, �ll the whole table.78



For the tables we have used the following abbreviations:(*) | no nontrivial right ideal is left stabilizing(**) | no nontrivial right ideal is left stabilizingand left annihilating(***) | no nontrivial right ideal is left stabilizingand strongly left annihilatingl.s. | left stabilizingl.ann. | left annihilatingstr.l.ann. | strongly left annihilating9l.zero | S has a left zero9zero | S has a zerol.coll. | left collapsiblewlc | weakly left collapsibler.rev. | right reversibleC | right cancellativeC0 | right cancellative with a zero adjoinedG | groupG0 | group with a zero adjoinedLAR | left almost regularReg. | regular.Since idempotent monoids are regular, all acts over idempotent monoids areprincipally weakly at by [16]. In addition, pullback atness and condition(P) are the same for every act over an idempotent monoid by [1].
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KONSERVATIIVSED RUUDUD JAPOL�UGOONIDE LAMEDUSEGA SEOTUDOMADUSEDKokkuv~oteSelles t�o�os vaadeldakse pol�ugoone �ule monoidi (ehk S-pol�ugoone, kus S onmonoid) ja pol�ugoonide neid omadusi, mis on �uhel v~oi teisel viisil seotudlamedusega. T�apsemalt �oeldes k�asitletakse monoidide homoloogilist klassi-�katsiooni pol�ugoonide omaduste j�argi �ule nende monoidide. See t�ahendab,et vastust otsitakse j�argmist t�u�upi k�usimustele: \Milliseid tingimusi peabrahuldama monoid, et k~oik mingi omadusega parempoolsed pol�ugoonid �uleselle monoidi oleksid ka mingi teise omadusega?". Levinumad lamedusegaseotud omadused, mida on homoloogilise klassi�katsiooni k�aigus siiani vaa-deldud, on tugev lamedus, tingimus (P), lamedus, n~ork lamedus, spetsi-aalne n~ork lamedus ja v�a�andetus.Parempoolset S-pol�ugooni nimetatakse tugevalt lamedaks, kui tensor-korrutamine temaga s�ailitab k~oik konservatiivsed ruudud vasakpoolsete S-pol�ugoonide kategoorias. 2. peat�ukis de�neeritakse seda s�ailitamise n~ouetformaalselt n~orgendades rida omadusi, mis j�arelduvad tugevast lamedusest.Edasi uuritakse, millised neist omadustest de�neerivad erinevad pol�ugooni-de klassid. T~oestatakse, et selliselt �uldistades saame k�atte k~oik eespool-mainitud lamedusega seotud omadused ning et lisaks sellele tekib veel 3uut pol�ugoonide klassi.3. peat�ukis vaadeldakse monoidide homoloogilist klassi�katsiooni, kus-juures erilise t�ahelepanu all on `uued' omadused. Leitakse, millal Reesi fak-torpol�ugoonide korral �uhest vaatluse all olevast omadusest j�areldub teine,real juhtudel on leitud vastus ka ts�ukliliste v~oi suvaliste pol�ugoonide jaoks.N�aiteks on juba varemuuritud omaduste jaoks leitud vastus k�usimusele,milliste monoidide korral on k~oik v�a�andeta parempoolsed pol�ugoonid spet-siaalselt n~orgalt lamedad. Eraldi on k�asitletud idempotentseid monoide.Homoloogilise klassi�katsiooniga seotud tulemused on koondatud 3. peat�ukil~opus olevatesse tabelitesse.
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