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INTRODUCTION

For all algebraic structures, studying their representations is a natural part
of the theory of these structures. The same holds for semigroups and
monoids. Among representations of monoids, representations by transfor-
mations of sets are probably most important. Such a representation may
be considered as an algebraic structure (with unary operations correspond-
ing to the elements of this monoid) which will be later called an act over a
monoid, so we can speak about the theory of acts over monoids instead of
the theory of representations of monoids by transformations of sets. Any
module over a ring (with identity) is an example of an act over a monoid.

There are many different properties of acts that have been investigated.
Special emphasis has been on properties having categorical origin, such as
projectivity, injectivity, freeness, cofreeness and so on. These properties
can be divided, roughly speaking, into two big groups: properties gathered
around projectivity and properties gathered around injectivity. In this work
we consider only projectivity and related properties.

A large number of results about acts over monoids concerns so-called
homological classification of monoids by properties of acts over them. That
means the consideration of questions like “Which conditions must a monoid
satisfy in order for all acts over it with one property to have another prop-
erty?”. Before acts over monoids, similar questions were asked for mod-
ules over rings. It turned out that the situation for acts is much different
from the situation for modules. Namely, many so-called flatness properties
(which are generalizations of projectivity) are the same for modules but
essentially different for acts.

In this work we try to classify monoids by flatness properties of acts.
The earliest works in this area belong to Kilp and by now a lot of articles
have been published on this topic. Among flatness properties, pullback flat-
ness (or strong flatness, which is the most common term) is the strongest.
It was introduced in [32] under the name of weak flatness. A right act
over a monoid is called pullback flat if tensoring by it preserves all pullback
diagrams in the category of left acts over this monoid. From the proper-
ties under consideration pullback flatness implies condition (P), flatness,
weak flatness, principal weak flatness and torsion freeness. From [2] it fol-
lows that, besides pullback flatness, also condition (P) can be described in
terms of tensoring of pullbacks. So we can pose the question: can the other
weaker flatness properties be characterized in the same way and are these
properties the only ones which can be obtained in this way? We want to
see what happens if we require preserving only all pullback diagrams of a
certain type or if we do not require preserving but something less.



We start with a scheme where, by dropping requirements, we obtain a
formal structure of properties which an act can or cannot have. Closer ex-
amination in section 2 shows which of these properties are actually different.
We see that condition (P), flatness, weak flatness, principal weak flatness
and torsion freeness find their place in this scheme and, moreover, we see
new properties emerging. We use the terms ‘weakly pullback flat’, ‘weakly
homoflat’ and ‘principally weakly homoflat’ to denote these properties.

In section 3 we try to solve some classification problems. Although
flatness properties do not form a chain with respect to order of decreasing
strength, for homological classification purposes it is natural to choose such
a chain. We have chosen here a chain starting with pullback flatness, ending
with torsion freeness and including all ‘new’ properties (and leaving flatness
and weak flatness aside). Some of the results in section 3 concern only ‘old’
properties (for example we find a description of monoids over which all
torsion free right acts are principally weakly flat) but most of them involve
‘new’ properties, too. The results obtained are tabulated at the end.

Since the conditions on acts or monoids might be quite complicated,
we quite often use the standard symbols of mathematical logic hoping that
this will not cause confusion, but rather help to avoid it.



1 PRELIMINARIES

Throughout this paper let S denote a monoid with an identity element 1.
We start with basic definitions of the theory of acts over monoids.

Definition 1 A nonempty set A is called a right S-act (or a right act over
S) and denoted Ag (or simply A if the context permits to drop ) if S acts
on A unitarily from the right, that is, there exists a mapping A x 5 — A,
(a,s) — as, satisfying the conditions

1. (as)t = a(st),
2.al=ua
for all « € A and all 5,1 € 5. Left S-acts gA are defined dually.

Definition 2 A nonempty subset B of a right (left) S-act A is called a
subact of Aif bs € B (sbe B) forallbe B and s € 5.

Definition 3 An equivalence relation p on a right (left) S-act Ais called a
congruence on A if ajpay implies (a1s)p(azs) ((saq)p(saz)) for all ay,ay € A
and s € 5.

Definition 4 If A and B are right (left) S-acts then a mapping f: A — B
is called a homomorphism of right (left) S-acts if

flas) = f(a)s
(f(sa) = sf(a)) for all a € A and s € S.

A nonempty subset K of a monoid S is a right (left) ideal of S, if ks € K
(sk € K)forall s € S and k € K. A right (left) ideal K of a monoid S is
called proper, if it is not equal to S. It is called trivial, if K = S or |K| = 1.
By a trivial monoid we mean the one-element monoid.

Every right (left) ideal A of S is in a natural way a right (left) S-act
which is a subact of Sg (595).

An equivalence relation p on a monoid S is a right (left) congruence on
S if zypag implies (x1s)p(x2s) ((sz1)p(szy)) for all zq, 24,5 € 5. A right
and left congruence on 5 is called a congruence on 5.

So congruences of the right S-act Sg are exactly right congruences of
the monoid 5.

The notion of tensor product plays important role in the study of acts over
monoids. The definition of tensor product of acts was first given in [12].



Definition 5 ([12]) If As and gB are aright and aleft S-act, respectively,
the tensor product As @ gB of Ag and gB (over the monoid ) is the
quotient set (A X B)/7, where 7 is the smallest equivalence relation on
A X B that identifies all pairs (as,b) and (a,sb), a € Ag, b€ ¢B,s € S.

The 7-class of a pair (a,b) € A x B is denoted by a ® b, so for every s € 9
we have the equality

as Rb=a® sb.

For calculation purposes we shall use the following lemma, which actually
can be formulated in several different ways (see [4], [20]).

Lemma 1.1 ([10]) Let S be a monoid, a,a’ € Ag,b,b' € sB. Then
a@b=ad Qb in As @ sB if and only if there exvist a natural number n and

elements ay,...,a,_1 € Ag,b1,...,b,_1 € sB, S1,...,8, t1,...,tp_1 €5
such that
a = a1$ Slb = tlbl
a1t1 = ags9 82b1 = tgbz
Gpitn_1 = a's, Szb,_1 = b.

A sequence of equalities as in Lemma 1.1 is called a scheme (or tossing) of
length n over Ag and ¢B joining (a,b) and (a’,b’).
The following two lemmas are direct consequences of Lemma 1.1.

Lemma 1.2 Let S be a monoid, a,a’ € Ag,b,b' € sB. Thena®b=d @b
in As®@gs(5bUSY) if and only if there exist a natural number n and elements
a1,...,0p_1 € As,bl,...,bn_l € {b,b/}, S1gevesSny b1, 81 € S such
that

a = a1$ Slb = tlbl

alty = agsy s2b1 = 12by
taet = d bpy = U
p—1lp—1 = @Sy Splp—1 = .

Lemma 1.3 ([12]) Let S be a monoid. Thena® s =a' @t in As® g9 if
and only if as = a't in As.

Fix a right S-act Ag. Let us show that this gives rise to a functor Ag ®s —
from the category of all left S-acts to the category of sets. For objects s M
of the category of left S-acts let Ag ®g — be defined by

M —As® M

10



and for morphisms f:gM — gN in the category of left S-acts (that is for
homomorphisms of left S-acts) by

freidy ® f

where

ida®f:As®sM —As® sN
is defined by

(idg @ f)la@m)=a® f(m)
for all @ € Ag and m € gM (it follows from Lemma 1.1 that idg @ f is
well-defined). Then

(As @s —)(idopm) = idag ®idoy = idaggom = id(Ag05-)(sM)
because
(idag @idp)e@m) =a®@idpm(m) = a®@m =ida g m(a® m)

for all « € Ag, m € ¢M. Take two homomorphisms f:¢M — gN,
g:sN — 5@ of left S-acts. Then

(idag @gfila@m) = a@(gf)(m)=a®g(f(m))
(idas @ g)(a® f(m)
= (idag ® g)((idag @ f
= ((iday @ g)(ida, ® f

for all @ € Ag, m € ¢M. This means that

)a@m))
N(a®m)

idAs ® gf = (idAs ® g)(idAs ® f)v

(As @5 —=)(g9f) = (As @5 —)(g)(As @s —)(f).

Hence Ag ®s — is indeed a covariant functor. This functor is called the
functor of tensoring by Ag.

We now give the definitions of properties of S-acts related to flatness
that have been under closer examination in many articles on homological
classification of monoids.

Definition 6 ([12]) A right S-act Ag is called flat if the functor
Ags ®s — preserves all monomorphisms.

Thus Ag is flat if for every monomorphism t:gM — ¢V the mapping

ida ®@¢: As @ sM —As @ gN is injective, that is a ® «(m) = o’ @ (m')
implies a @ m = ¢’ @ m’ for all a,a’ € As, m,m' € M. The most often
used (already since [12]) reformulation of the definition is the following one.
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Lemma 1.4 A right S-act Ag is flat if and only if for every left S-act
s N, its subact sM and all elements a,a’ € As, m,m’ € sM, if a @ m and
a’' @m' are equal in the tensor product As @ sN then they are equal already
in the tensor product Ag ® s M.

Definition 7 ([15]) A right S-act Ag is called (principally) weakly flat if
the functor Ag ®g — preserves all monomorphisms from (principal) left

ideals of S into S.

From definitions of weak flatness and principal weak flatness and Lemma
1.3 we get the following criteria for checking weak flatness and principal
weak flatness.

Lemma 1.5 A right S-act As is weakly flat if and only if for all a,a’ € Ag,
s,t €9, ifas = a't then a®s = a’ @1 in the tensor product As@g(SsU St).

Lemma 1.6 A right S-act Ag is principally weakly flat if and only if for
all a,a’ € Ag, s,t € 5, if as = a's then a @ s = a’ ® s in the tensor product
Ag ® S(SS).

It follows from the definitions that flatness implies weak flatness and weak
flatness implies principal weak flatness. As proved in [15], the following
definition gives a generalization of principal weak flatness.

Definition 8 ([24]) A right S-act Ag is called torsion free if ac = a'c
implies @ = a’ for all a,a’ € Ag and right cancellable ¢ € S.

The following definitions give some properties which turn out to be stronger
than flatness.

Definition 9 A right S-act Ag is called free if there exists a subset

U C Ag such that every element a € Ag can be uniquely presented in the
form a = us, u € U, s € S, ie.,if @ = w1y = ugsg, uy,us € U, 81,59 € 5
then u; = uy and s = s3. The subset U is called a basis of Ag.

Projectivity in the category of right acts is defined as in every category.

Definition 10 A right S-act Ag is called projective if for every epimor-
phism 7 : Pg — @)s and every homomorphism f: Ag — (s there exists a
homomorphism ¢ : As — Pg such that 7g = f.

From Definition 9 the following description of freeness follows (note that | |
denotes the disjoint union).
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Theorem 1.7 A right S-act As is free if and only if As = | |;c; A;, where
A; 2 Sg for every v € 1.

For projectivity the following description is known.

Theorem 1.8 ([22]) A right S-act Ag is projective if and only if
As = | |;er Ai, where for every i € I there exists an idempotent e; € S such
that A; = (eiS)S.

From Theorems 1.7 and 1.8 it immediately follows that every free S-act is
projective.

Pullback diagrams in the category of left S-acts (or sets) are defined as
in every category.

Definition 11 A diagram

P
sP - sM
Pz\ \ f
sN p sQ

where gP, sM,s N and g@) are left S-acts and f, g, p; and p, are homomor-
phisms of left S-acts, is called a pullback diagram, or a pullback square, if
fp1 = gpo and for every left S-act 5P, all homomorphisms 7, : sP — sM
and P, : gP — sN such that fp, = gp, there exists a unique homomor-
phism h:sP — sP such that pih = p; and poh = P,.

Every nonempty set can be considered as a left act over a trivial monoid.
Homomorphisms of such left acts are just mappings of sets and so with the
previous definition, pullback diagrams in the category of sets are defined,
too.

We omit the definition of equalizer diagram since we shall not use it in
what follows. Interested readers can see [30], for example.

Definition 12 ([32]) A right S-act Ag is called strongly flat if the functor
Ag ®s — preserves pullbacks and equalizers.

The meaning of the word ‘preserves’ will be explained in subsection 2.1.

Definition 13 ([30]) A right S-act Ag is called pullback flat if the functor
Ags ®s — preserves pullbacks.

13



Definition 14 ([30]) A right S-act Ag is called equalizer flat if the functor
Ag ®g — preserves equalizers.

Definition 15 ([32]) A right S-act Ag satisfies condition (P) if

(Va,d' € As)(Vs,s' € S)(as =d's’' =
(3" € Ag)(Fu,v € S)a=a"una =a"vAus=rvs)).

Definition 16 ([32]) A right S-act Ag satisfies condition (E) if

(Va € Ag)(Vs,s" € 5)(as = as’ =
(Ja' € Ag)(Fu € S)(a = a’u A us = us')).

Originally, acts for which the functor of tensoring preserves equalizers and
pullbacks, were called weakly flat in [32] and it was proved there that the
functor of tensoring by a right S-act preserves equalizers and pullbacks if
and only if this act satisfies conditions (P) and (E). Afterwards such acts
have been called strongly flat starting from [13]. In [13] it was also proved
that strong flatness implies flatness. It turned out that flatness is essentially
weaker than strong flatness, namely it was proved in [19] that all flat right
S-acts are strongly flat if and only if S has only one element. In [30] the
interval between flatness and strong flatness was investigated in detail. In
this paper pullback flat and equalizer flat acts (as well as acts satisfying
condition (P) or (E)) were first considered on their own and it was shown
that condition (P) implies flatness. This made condition (P) a suitable
intermediate property between flatness and strong flatness for homological
classification purposes. However, the question whether pullback flatness
implies strong flatness remained open. In [2] it was proved that an act is
pullback flat if and only if it is strongly flat. This means that pullback
flatness implies equalizer flatness. For our purposes we shall use the term
‘pullback flat’ as a synonym of ‘strongly flat’. So for the pullback flatness
we have the following description.

Theorem 1.9 ([32], [2]) A right S-act is pullback flat if and only if it
satisfies conditions (P) and (E).

It was shown in [32] that projectivity implies pullback flatness. So we have
the following implications:

freeness = projectivity = pullback flatness = condition (P) =
= flatness = weak flatness =
= principal weak flatness = torsion freeness.

There exist examples in the literature showing that all these implications
are strict.
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Every cyclic right S-act (i.e. an act which is generated by a single element)
is isomorphic to a factor act S/p where p is a right congruence on 5. A
p-class of an element s € S will be denoted by [s], or simply [s].

For cyclic acts we shall need the following proposition.

Proposition 1.10 ([1], [7], [23]) Let p be a right congruence on a monoid
S. A cyclic right S-act S/p

e satisfies condition (P) if and only if

(Vs,t € S)(spt = (Fu,v € 5)(us = vt ANupl Awvpl));

o is pullback flat (satisfies condition (E)) if and only if

(Vs,t € S)(spt = (Fu € S)(us = ut Aupl));

e is torsion free if and only if

(Vs,t,c € 9)(scpte A ¢ is right cancellable = spt).

If K C 5 is aright ideal of S then the binary relation px on S5, defined by
sprt <= ((s=1) V (s,t € K)),

s,t € 5, is a right congruence on S. The factor act S/px will be denoted
S/K and it is called a right Rees factor act of S by K.
For a monoid S we can consider any one-element set @ = {#} as a right
S-act Og by defining
fs =190

for all s € §. Since all such one-element right S-acts are isomorphic, we can
speak about the one-element right S-act ©g. From the previous paragraph
we have

S/S = 0.

For right Rees factor acts and Qg the descriptions of flatness properties
take simpler forms. Before formulating them we need some more definitions.

Definition 17 ([17]) A monoid S is called left (right) collapsible if for
every s,s’ € S there exists z € § such that zs = 25’ (sz = §'z).

Definition 18 A monoid S is called right (left) reversible if for every
5,8 € 5 there exist u,v € 5 such that us = vs’ (su = s'v).

15



Definition 19 A right ideal K of a monoid 5 is called left stabilizing if for
every k € K there exists | € K such that [k = k.

Left stabilizing right ideals came up in [15], the name was first given in [3]

Proposition 1.11 Let K be a right ideal of a monoid S. A right Rees
factor act S| K

is (weakly) flat if and only if S is right reversible and K is left stabi-
lizing [15];

is principally weakly flat if and only if K is left stabilizing [15];

15 torsion free if and only if sc € K implies s € K for s,c € 9, ¢ right
cancellable [20];

satisfies condition (P) if and only if |K| =1 or K = 5 and S is right
reversible [15];

is pullback flat (satisfies condition (E)) if and only if |K| = 1 or
K =5 and S is left collapsible [20];

is projective if and only if |K| =1 or K = S and S has a left zero
[20];

is free if and only if |K| =1 [20].

Corollary 1.12 The one-element right S-act ©g

is (weakly) flat if and only if S is right reversible;

s principally weakly flat;

is torsion free;

satisfies condition (P) if and only if S is right reversible;

is pullback flat (satisfies condition (E)) if and only if S is left col-
lapsible;

s projective if and only if S has a left zero;
is free if and only if S = {1}.

The following lemmas will be used when working with factor acts.

16



Lemma 1.13 ([29]) Let Ag be a right S-act, H C Ag X As and p(H) the
smallest congruence on Ag, which contains H. Then (a,a’) € p(H),

a,a’ € Ag, if and only if either a = a’ or there exvist a natural number n
and elements y1,...,y, € 5, by,..., by, dy, ..., d, € Ag such that

a = biyr  dayzs = bsys
diyr = bay2 con dpy, = d
where either (b;,d;) € H or (d;,b;) € H for everyi € {1,...,n}.

We shall write simply p(b, d) instead of p({(b,d)}). As special cases of the
previous lemma we get the following lemmas.

Lemma 1.14 Let Ag be a right S-act, b,d € As and p(b,d) the smallest
congruence on Ag, which contains the pair (b,d). Then (a,a’) € p(b,d),
a,a’ € Ag, if and only if either a = a' or there exist a natural number n
and elements y1,...,y, € 5, by,..., by, dy, ..., d, € Ag such that

a = by days = b3ys
dlyl = b2y2 dnyn = a’,

where {b;,d;} = {b,d} for everyi e {1,...,n}.
Lemma 1.15 Let S be a monoid, s,t € S and p(s,t) the smallest right

congruence on S, which contains the pair (s,t). Then (z,y) € p(s,t),
x,y €5, if and only if either x = y or there exist a natural number n and

elements Y1, ..., Uny S1y---y8n, 1y... by €5 such that
T = s1h loy2 = $3Y3
Liyr = S2Y2 v lnYn = Y,

where {s;,t;} = {s,t} for every i € {1,...,n}.

Let S be a monoid and let 57 and 555 be two left S-acts, which are
isomorphic to the left S-act g5. Then there exist left S-act isomorphisms
a1 185 — 557 and ag 1 g5 — g55. For the images of an element s of 5 we
shall write a1(s) = s and ay(s) = s3. Thus, for instance, 17 and 13 are the
isomorphic copies of the identity element 1 of 5 in 57 and 59, respectively,
and using that a; and @y are homomorphisms of left S-acts we have

(st); = st;,

s,t € 5,4 € {1,2}. In what follows we shall also make use of the left S-act
s(S110 52) which is just the disjoint union of 57 and S3 on which S acts in
the natural way from the left, that is

sy = (xs),
sy = (xs),

17



for all x,s€ 5.
If S is a monoid and ¢ € S then A, : S — 5 (p; : 5 — 9) will denote
the left (right) translation by ¢, i.e.

Ai(s) = ts

(pi(s) = st) for every s € 5. Then ker Ay (ker p;) is a right (left) congruence
on S.
Let T be a semigroup. Taking S = T'U {1} the disjoint union of 7" and
{1} and defining
11l=1landtl=1t =1

for every t € T we obtain a monoid 5 with the identity element 1. We say
that the monoid S is obtained from 7' by (external) adjoining of identity.
This monoid is denoted by 7.

Let T be a monoid. Taking 5 =7 U {0} and defining

t0=0=00=0

for every t € T we get a monoid S with a zero element 0. We say that the
monoid S is obtained from 7" by (external) adjoining of zero and denote it
by T°.

18



2 TENSORING OF PULLBACKS AND
FLATNESS PROPERTIES

2.1 A new look at the tensoring of pullbacks

Consider a diagram

yal

sP sM
P2\ \ f (P1)
sN p s@

in the category of left S-acts.

Lemma 2.1 ([30], [31]) If (P1) is a pullback diagram then gP is iso-
morphic to the left S-act {(m,n) € sM x sN | f(m) = g(n)} where
s(m,n) = (sm,sn) for all s € S, m € sM andn € sN.

So if (P1) is a pullback of homomorphisms f and g then ¢P is determined
up to isomorphism and we may assume that it is

sP={(m,n) € sM x sN | f(m) = g(n)},

and pp,ps are the restrictions of the projections, that is, pi((m,n)) = m
and po((m,n)) = n for every (m,n) € sP. With this convention let us
denote such a pullback diagram (P1) in the category of left S-acts by
P(M7 N7 f7g7Q)'

In the same way one can construct the pullback of two mappings in the
category of sets, because nonempty sets can be considered as left acts over
a trivial monoid.

Tensoring the pullback diagram P(M, N, f,¢,Q) by any right S-act Ag
one gets the commutative diagram

id
As ® sP aon As® sM
idg @ po idy® f
As® gN - AS@SQ
id 4

in the category of sets.
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For the pullback of mappings id4 ® f and id4 ® ¢ in the category of
sets we may take by our convention

P'={(a@m,a’ @n)e(As@sM) x (As@sN)|a® f(m)=d ©g(n)}

with pi’ and py’ the restrictions of the projections. (Note that the existence
of the pullback diagram (P1) implies the existence of the pullback diagram
ofidg @ fandids ® g.)

Now it follows from the definition of pullbacks that there exists a unique
mapping ¢ : As ® sP — P’ such that the diagram

Asg ® gP
idg @ py
idg ® P2 P’ ; As ® sM (PQ)
Y41
P4 ida® f
A N A
s® s a0 g s ®sQ

is commutative. We shall call this mapping the mapping ¢ corresponding
to the pullback diagram P(M,N, f,q,Q).
It was stated in [2] that the mapping ¢ in Diagram (P2) is given by

wla®(m,n))=(a®@m,a®n)

for all @ € Ag and (m,n) € gP.
Note that surjectivity of ¢ means that

(Va,a' € Ag)(VYm € sM)(Vn € sN)[a® f(m)=1d ® g(n) =

(da” € Ag)(Am’ € sM)(In’ € sN)
(f(m')y=g(n)ha@m=d"@m' Nd @n=2d @n')]

and injectivity of ¢ means that

(Va,d’ € Ag)(Vm,m' € sM)(¥n,n' € gN)
[f(m)=gn)A f(m)=g(n)ha@m=d @m'ANa@n=d @n =
a®@(m,n)=d @ (m',n)in As @ sP].

In what follows, if we want to use surjectivity or injectivity of ¢ correspond-

ing to some pullback diagram, we always use these statements, without
specially emphasizing it.
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By the original definition, pullback flatness of Ag means that the corre-
sponding ¢ is surjective and injective for every pullback diagram

P(M,N, f,g,Q) in the category of left S-acts. It was shown in [2] that
this holds if and only if Ag satisfies conditions (E) and (P). Moreover, in
[2] it was proved that an act Ag satisfies condition (P) if and only if the
corresponding ¢ is surjective for every pullback diagram P(M, N, f,g,0Q).
So we notice that if we drop the requirement of injectivity of ¢ in the
definition of pullback flatness, we obtain condition (P). On the other hand
we know that condition (P) implies flatness. So the following questions
arise: Can we get flatness by weakening the requirements that ¢ has to
fulfill in order for Ag to satisfy condition (P)? What happens if we demand
surjectivity of ¢ not for all pullback diagrams but only for some specific
kind of them? And so on.

It turns out that it is indeed possible to give for flatness (and its general-
izations) a description that uses surjectivity of ¢ for some special pullbacks.
Of course, there are several ways how one can weaken requirements on ¢
to get possible generalizations of pullback flatness. What we have chosen
as our aim here is to generalize pullback flatness so that the well-known
flatness properties result and to find out whether there exist any new prop-
erties that can be obtained by making steps towards generalization similar
to those which we need in order to get condition (P) from pullback flatness,
flatness from condition (P), weak flatness from flatness and so on. Having
this in mind, it seems reasonable to study what happens if we consider
pullbacks of two equal homomorphisms, if this homomorphism is actu-
ally a monomorphism or if we restrict ourselves only to homomorphisms
(monomorphisms) from (principal) left ideals of 5 to 5. What results is the
following rather formal collection of properties that can be organized into
the following scheme.
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@ surj. and inj.

Scheme 1

P(MaNafagaQ)
|
© surj. @ surj. and inj.
P(MaNafagaQ) P(MaMafagaQ)
| |
© surj. @ surj. and inj.
P(MaMafagaQ) P(Iajafagas)
| |
© surj. © surj. @ surj. and inj.
P(MaMafafaQ) P(Iajafagas) P(SSaSSafagaS)
© surj. © surj. © surj. @ surj. and inj.
P(MaMaLaLaQ) P(Iajafafas) P(SSaSSafagaS) P(SaSafagaS)
| | |
© surj. © surj. © surj.
P(I,1,¢,0,5) P(Ss,Ss, f, [,9) P(S,S, f,9,9)
| |
© surj. © surj.
P(Ss,Ss,¢,¢,5) P(S,S, f, 1,9)
|
© surj.
P(S,S,¢,1,5)

Here I (S's) stands for a (principal) left ideal of S, and ¢ for a monomor-
phism of left S-acts. Ivery rectangle stands for a class of right S-acts
that is defined by the property written into it in short but, we hope,
understandably. For instance, a rectangle with the text “o surj. and
inj. P(5s,Ss,f,g9,59)” denotes the class of all right S-acts Ag such that
the corresponding ¢ is surjective and injective for every pullback diagram
P(5s,55,f,9,5),s € 5. A line between two rectangles indicates that the
class of right S-acts corresponding to the rectangle at the upper end of the
line is contained in the class corresponding to the rectangle at the lower
end.

A priori we do not know whether these classes coincide. The rest of this
section is devoted to determing which of these classes are actually different.
We try to give descriptions of the corresponding properties, which do not
use the notion of pullback. For new properties (those which do not appear
in section 1) we also give conditions under which cyclic acts, Rees factor
acts, or one-element act have this property.
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2.2 On torsion free acts

First we see that the lowest cell in the leftmost column of Scheme 1 is
actually the class of torsion free right S-acts.

Proposition 2.2 A right S-act As is torsion free if and only if the cor-
responding ¢ is surjective for every pullback diagram P(S,S5,t,t,5), where
t:885 — g5 is a monomorphism of left S-acts.

Proof. Necessity. Let Ag be torsion free. Suppose that

a®@u(s)=da @t) for some s,t € 5 and a monomorphism ¢ : g5 — g5 of
left S-acts. Since ¢ is a homomorphism of left S-acts, a @ s¢(1) = ¢’ @ (1)
in Ag ® ¢5.By Lemma 1.3 this means that ast(1) = a’te(1) in Ag. From
the injectivity of ¢ it follows that the element ¢(1) € S is right cancellable.
Hence torsion freeness of Ag implies that as = a’t. Denote a” = as = a't.
Then we have a@s = a"®@1 and @’ @t = a”"®1in Ag® g5 and ¢(1) = ¢(1).
Thus ¢ is surjective for the pullback diagram P(S9,5,¢,¢,.9).

Sufficiency. Suppose that ac = d’c for some a,a’ € Ag and right
cancellable ¢ € S. Take a mapping ¢ = p. : §5 — 5. Since c¢ is right
cancellable, ¢ is a monomorphism of left S-acts. Now at(1) = a’¢(1), which
means that ¢ ® «(1) = a’ @ (1) in Ag ® ¢S by Lemma 1.3. Surjectivity of
¢ for the diagram P(S5,95,¢,¢,.9) implies that there exist " € Ag, s',¢' € §
such that «(s') = «(t'),a®@1 =ad"®@s and ' ® 1 = a" @t in Ag ® 9.
Injectivity of ¢ implies s’ = t’ and Lemma 1.3 implies a = a”s" and o’ = a”'t'.
Thus @ = ¢’ and Ag is torsion free. J

2.3 On principally weakly flat acts

It turns out that the third cell from the top in the leftmost column of
Scheme 1 is the class of principally weakly flat right S-acts.

Proposition 2.3 A right S-act Ag is principally weakly flat if and only if
the corresponding ¢ is surjective for every pullback diagram P(Ss,Ss,t,t,.5),
where s € S and v : g(Ss) — g5 is a monomorphism of left S-acts.

Proof. Necessity. Let Ag be principally weakly flat. Suppose that
a®(us) =a @ i(vs) for some a,a’ € Ag,s,u,v € 5 and a monomorphism
t:s(9s) — g5 of left S-acts. Principal weak flatness of 5 implies that
a@us = o @ovsin Ag ® s(5s). Thus ¢ is surjective for the pullback
diagram P(S5s,S5s,¢,t,5), because a @ us = o’ ®vs and ¢/ @ vs = ¢’ @ vs in
Ag ® g(8s) and t(vs) = o(vs).

Sufficiency. Suppose that a @ ¢(us) = ¢’ @ ¢(vs) in Ag @ g5 for some
a,a’ € Ag, u,v,s € S and a monomorphism ¢ : g(5s) — 9. Surjectivity
of ¢ for the diagram P(Ss,Ss,,t,5) implies that there exist «” € Ag,
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u',v" € Ss such that o(u') = «(v'), a @ us = a” @ v in Asg @ s(5s) and
ad ®vs = a"@v in Asg ® s(5s). Injectivity of ¢ implies v’ = v’. Thus
a®us=a @vsin Ag @ g(9s) and Ag is principally weakly flat. &

2.4 On weakly flat acts

Here we show that the second cell from the top in the leftmost column of
Scheme 1 is the class of weakly flat right S-acts.

Proposition 2.4 A right S-act Ag is weakly flat if and only if the corre-
sponding ¢ is surjective for every pullback diagram P(I,1,¢,1,5), where I
s a left ideal of S and 1 : g1 — 55 is a monomorphism of left S-acts.

Proof. Necessity. Let Ag be weakly flat. Suppose that
a®us) = a @ut) for some a,a’ € Ag,s,t € I and a monomorphism
t: 5] — ¢85 of left §-acts. Weak flatness of Ag implies that a ® s = a' @ ¢
in Ag ® gI. Thus ¢ is surjective for the pullback diagram P(I,1,¢,,5),
because ¢« ® s = a' ®tand ¢’ ®t =da' @t in Asg ® s and (1) = o(1).
Sufficiency. Suppose that a®@(s) = ¢’ @(t) in Ag® g5 for a left ideal
I,a,d’ € Ag, s,t € I and a monomorphism ¢ : g1 — ¢5. Surjectivity of ¢
for the diagram P(I,I,¢,¢,5) implies that there exist a” € Ag, v',v' € I
such that «(u') = «(v"),a®@ s =a"@u and '’ @t = " @ v' in Ag ® sI.
Injectivity of + implies v’ = v'. Thus a @ s = '’ @t in As ® s/ and Ag is
weakly flat. I

2.5 On flat acts

The upper cell in the leftmost column of Scheme 1 is the class of all flat
right S-acts.

Proposition 2.5 A right S-act Ag is flat if and only if the corresponding
¢ is surjective for every pullback diagram P(M,M,t,1,Q), where
t:sM — g@Q is a monomorphism of left §-acts.

Proof. Necessity. Let Ag be flat. Suppose that a @ ¢«(m) = ¢/ @ ¢(n)
in As ® s@ for some a,a’ € Ag, m,n € sM and a monomorphism
t:sM — 5@ of left S-acts. Flatness of Ag implies that « @ m = ¢’ ® n in
As @ sM. Thus ¢ is surjective for the pullback diagram P(M,M,t,:,Q),
because a @ m=a’ @n and o’ @ n =d" @nin As @ sM and «(n) = o(n).
Sufficiency.  Suppose that a @ ¢(m) = ¢ ® «(n) in Ag @ g@ for
a,a’ € As, m,n € sM and a monomorphism ¢ : sM — Q. Surjectivity
of ¢ for the diagram P(M,M,t,¢,Q) implies that there exist ¢’ € Ag,
m’,n’ € M such that «(m') = «(n'),a@m =ad"@m' and ¢’ @n =a"@n’ in
As @ s M. Injectivity of ¢ implies m’ = n'. Thus a@m = ¢’ @n in As@ s M
and Ag is flat. 1
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2.6 Principally weakly homoflat acts

Here we show that the two lowest cells in the second column of Scheme 1
define the same the class of right S-acts. We find an alternative descrip-
tion of a right S-act (cyclic right S-act, right Rees factor act) having the
corresponding property and show that this class is a proper subclass of the
class of all principally weakly flat right S-acts.

Proposition 2.6 Let Ag be a right S-act. The following assertions are
equivalent:

1. The corresponding ¢ is surjective for every pullback diagram

P(Ss, 55, f,f,5), where s € 9.

2. The corresponding ¢ is surjective for every pullback diagram

P(S, S, [, [, 5).
N (5,5, 1. f.5)

(Va,d’ € Ag)(Vt € §)(at = d't =
(Fa" € Ag)(Fu,v € S)(ut = vt ANa=a"und =da"v)).

Proof. 1. = 2. is clear.

2. = 3. Suppose that the corresponding ¢ is surjective for every pullback
diagram P(S, 5, f, f,9). Let at = d't, a,a’ € Ag, t € 5. Consider the
homomorphism p; : ¢5 — 5. Then p(1) = ¢ and ap(1) = a’p(1). By
Lemma 1.3 we have a @ p4(1) = ' @ p¢(1) in Ag ® 55. Since ¢ is surjective
for the pullback diagram P(S,S, ps, pr, ), there exist a” € Ag, u,v € 5
such that py(u) = pe(v), a @1 =d"@uand ' ®1 =d”"®vin As @ 55.
Using the definition of the homomorphism p; and Lemma 1.3 we obtain
ut = vt, @ = ¢""v and o' = a''v.

3.=> 1.Let a® f(zs) = d' @ f(ys) in As @ g5 for a,a’ € Ag,z,y,s€ 5
and a homomorphism f : g(9s) — g5. Let t € S be an element such that
f(s) =t. Then we have a ® 2t = @’ ® yt in Ag @ g5 which by Lemma 1.3
means that axt = a’yt. By the assumption there exist ¢’ € Ag, u,v € §
such that ut = vt, az = a"’v and o'y = a”v. Then

flus) = uf(s) = ut = vt = vf(s) = f(vs),
a®x5:ax®s:a"u®s:a"®us

and, analogously,
a'®ys:a"®vs

in Ag ® s(9s). Thus we have shown that ¢ is surjective for the pullback
diagram P(S's,Ss, f, f,9). 1
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Definition 20 We say that a right S-act Ag is principally weakly ho-
moflat, if the corresponding ¢ is surjective for every pullback diagram

P(Ss,Ss,f,f,5),s€S.

Remark 1 The prefix ‘homo’ comes from the word ‘homomorphism’ and
it indicates that we consider all homomorphisms instead of all monomor-
phisms (as it was in the case of principal weak flatness).

By Proposition 2.3 and Scheme 1 it is clear that principal weak homoflatness
implies principal weak flatness.

Lemma 2.7 Let p be a right congruence on a monoid S. The cyclic right
S-act §/p is principally weakly homoflat if and only if

(Va,y,t € 9)((at)p(yt) = (Fu,v € 9)(ut = vt A xpu A ypv)).

Proof. Necessity. Let S/p be principally weakly homoflat and let
(zt)p(yt) for some z,y,t € S. Then we have [z],t = [y],t in S/p. By Propo-
sition 2.6 there exist u’,v’,z € § such that vt = v't, [2], = [z],0/ and
[y], = [z],v. Denoting u = zu’ and v = zv" we have ut = vt, zpu and ypv.

Sufficiency. Let [z],t = [y],t for some z,y,t € S. Then (2t)p(yt) and
applying the assumption we get u,v € S such that ut = vt, xpu and ypwv.
Hence [z], = [1],u and [y], = [1],v. Thus S/p is principally weakly homoflat
by Proposition 2.6. 1

Definition 21 We say that a right ideal K of a monoid 5 is left annihi-
lating if
(Vt € S)Va,y e S\ K)(at,yt € K = at = yt).

Observe that if K is a proper left annihilating right ideal then zt € K
implies at = t for every t € K and every z € 5\ K.

Lemma 2.8 Let K be a right ideal of a monoid S. The right Rees factor
act S/ K is principally weakly homoflat if and only if K is left stabilizing
and left annihilating.

Proof. Necessity. Let S/K be principally weakly homoflat. Then it is
principally weakly flat and hence K is left stabilizing by Proposition 1.11.
Suppose that zt,yt € K for some ¢t € S and 2,y € S\ K. Then (at)pr(yt).
By Lemma 2.7 there exist u, v € § such that ut = vt, zpgu and ypxv. Now
z,y ¢ K yields 2 = v and y = v by the definition of px. Hence 2t = yt and
so K is a left annihilating right ideal.

Sufficiency. Let K be a left stabilizing and left annihilating right ideal
of 5. We use Lemma 2.7 to check that 5/K is principally weakly homoflat.
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Let (at)pi(yt) for some z,y,t € S. If 2t = yt then we can take u = z and
v = y. So we may assume that zt, yt € K. We have the following four cases
to consider.

a) z,y € K. Then we can take u = v = z.

b)x € K,y ¢ K. Since K is left stabilizing, we can find for yt € K an
element z € K such that zyt = yt. So we can take u = zy and v = y.

c)z ¢ K,y € K. This is analogous to the previous case.

d) z,y ¢ K. Since K is a left annihilating right ideal, we have zt = yt,
so v = x and v = y do the job. 1

Corollary 2.9 The one-element right S-act ©g is principally weakly ho-
moflat.

Proof.  Recall that this S-act is isomorphic to the Rees factor act 5/5.
Clearly 5 is both left stabilizing and left annihilating right ideal. Hence
this Rees factor act is principally weakly homoflat by Lemma 2.8. 1

It turns out that principal weak flatness and principal weak homoflatness
are different notions.

Example 1 (Flatness does not imply principal weak homoflatness.) Let
S = {l,e, f,0} be a semilattice, where ef = 0. Consider a right ideal
K =e5 = {e,0} of 5. Since e and 0 are idempotents, the Rees factor act
S/ K is principally weakly flat by Proposition 1.11 (and even flat, because $
is commutative). On the other hand, it is not principally weakly homoflat.
Indeed, 1, f € S\ K, le, fe € K, but le # fe, so K is not left annihilating.

2.7 Weakly homoflat acts

Here we show that the second cell from the top in the second column of
Scheme 1 is a proper subclass of the class of principally weakly homoflat
acts and the class of weakly flat acts. We find an alternative description
of a right S-act (cyclic right S-act, right Rees factor act) having the corre-
sponding property.

Lemma 2.10 Let Ag be a right S-act. The corresponding ¢ is surjective
for every pullback diagram P(I,1, f, f, ), where I is a left ideal of S, if and
only if for all elements s,t € S, all homomorphisms f : g(SsUSt) — g5, all
a,a' € Ag, ifaf(s) = d' f(t) then there exist a” € Ag, u,v € 5, s',t' € {s,1}
such that f(us') = f(vt'), a ® s = " @ us’ and o’ @t = " @ vt' in
Ag ® S(SS U St)
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Proof. Necessity. Suppose that ¢ is surjective for every pullback dia-
gram P(I,1,f,f,5). Let f: g(SsUSt) — g5 be a homomorphism of left
S-acts, s,t € 5. Suppose that af(s) = o f(t) for some a,a’ € Ag. This
means that a ® f(s) = a’ ® f(t) in Asg ® g5 by Lemma 1.3. By surjectiv-
ity of ¢ for the diagram P(SsU St,SsU ST, f, f,9) there exist a” € Ag,
u,v € 5,8t € {s,t} such that f(us') = f(vt'), a ® s = " ® us’ and
d@t=ad"@ot"in Asg ® s(5sU St).

Sufficiency. Suppose that the assumption holds. Consider a homo-
morphism f : g — g5. Let a @ f(i) = o’ @ f(j) in As ® 55 for some
a,a’ € Ag,i,7 € 1. Then af(i)=d f(j) by Lemma 1.3. Set J = SiUSj C I
and h = f|j:s(5iUSj) — 5. Then ah(i) = a’h(j) and by the assumption
there exist «” € Ag, u,v € 5, 7,5 € {i,j} such that h(ui') = h(vj’),
a@i=a" @ui'and ¢’ @ j = a" @vj in As @ sJ. Now clearly ui’,vj’ € J,

fui"y = h(uwi") = h(vy") = f(vg)),

and J C I implies that a®7 = a”"@ui’ and ¢’®j = «"®@vj in Ag@sI. Thus
the corresponding ¢ is surjective for the pullback diagram P(1,1, f, f,9).
|

Definition 22 We say that a right S-act Ag is weakly homofiat, if the
corresponding ¢ is surjective for every pullback diagram P(I,I,f,f,5),
where [ is a left ideal of 5.

By the definition weak homoflatness implies principal weak homoflatness
and by Proposition 2.4 weak homoflatness implies weak flatness.

The next lemma gives one more description of weak homoflatness. Although
its formulation is quite cumbersome its advantage, comparing with Lemma
2.10, is that the lengths of tossings involved do not exceed 3.

Lemma 2.11 A right S-act Ag is weakly homoflat if and only if for all
elements s,t € S, all homomorphisms f: s(SsU St) — 55, all a,a’ € Ag,
ifaf(s) = d f(t) then there exist a”,a1,a2 € Ag, uw,v,p1,P2,q1,92 € S such
that either f(us) = f(vt) and

a4 = a1p;
—_ 1" —_
aGq = au p1s = 418
I _
a4 = azp2

azqa = da"v pat = g,
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or f(us) = f(vs) and

4 = aip;
arqr = agzpz pit = ¢l
azqy = a’v pat = qas
a = a'u,
or f(ut) = f(vt) and
a i
a1 = azp2 p1s = 418
aqy = a’u pas = qot
o = da'v.

Proof. Necessity. Let af(s) = a'f(t) for s,t € 5, a,a’ € Ag and a
homomorphism f: g(SsU St) — ¢5. By Lemma 2.10 there exist a” € Ag,
w,v €9, 8,1 € {s,t} such that f(us') = f(vt'), a ® s = a” ® us’ and

d ®t=d" @vt"in Ag ® s(9sU St). Consequently ¢ ® s = a”"u @ s and
d@t=dv®tin Ag ® s(SsU St). By Lemma 1.2 there exist natural
numbers n and m and elements aq,...,a,-1,0a},...,a, _| € Ag,

Zly. - '7Zn—17217 ce '7Z;n—1 € {Svt}v Py s Pns q1y- -5 qn—1, pllv ce '7p;n7
Qyenesqh,_1 €5 such that

a = mp ns = ¢z
ai1qy = dazp2 P221 = (272
Ag-19k—1 = Qagpk PkZk—1 = 42k
arqr = Qp+1Pk+1 Pk+12E = Gk+1%2k+1
Up—2Gp—2 = Apn-1Pn—1 Pn-17n-2 = Gn-172n-1
" 7
Apn—149pn—1 = a UPp Pnin-1 = S
and
7 _ !0 / _ !
= 4P "t = @15
AW _ AR ! _ !
a1 gy — Py Pz = 4%
7 7 _ 1,0 77 _ 1.7
G 191 = 4P Dz = 454
a/ 7 — a/ / / Z/ — 7 Z/
141 1+1P141 Piya® 9417141
7 7 _ 7 / / 7 _ 7 7
am—qu—Q - am—lpm—l pm—lzm—Z - qm—lzm—l
7 7 _ " / / 7 _ 7
am—lqm—l = a ?me pmzm—l = t.

Denote zy = s, 2, = t, z, = ¢ and 2], = t'. Consider the following three
cases.
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a) s’ = t. Then there exists k € {1,...,n} such that z,_y = s and
Zk = Zp41 = ... = 2, = 8’ = t. Consequently

arqr () = agpp1pr1f(1) = aps1 f(Pr4128) = apr f(Qr12541)
= p410h41S(Zh41) = @hp2Pri2 f(Zp41) = -0
= ap-1Pn-1f(2n-2) = @n1 f(pu—120-2) = €u1f(Gn-120-1)
= dn_1Gn-1f(2n-1) = allupnf(zn—l) = a”f(upnzn—l)
= d"f(us') = a" f(vt') = a" f(vp], 2}, 1) = a"vp), f(2],_1)
= a;n—IQ;n—lf(Z;n—l) = a;n—lf((Z;n—IZ;n—l)
= a;n—1f(l’;n—12;n—2) = a;n—1pin—1f(24n—2) == al1pl1f(t)
= d' f(1).

We know that weak homoflatness implies principal weak homoflatness.
Hence the equality agqy f(t) = @’ f(¢) implies by Proposition 2.6 that there
exist di € Ag and x1,zo € 9 such that arpq, = dyz(, ¢’ = dizy and
x1 f(t) = @2 f(t). Moreover,

Zn,

s = a1P1S = 14121 = GaP22] = ... = ApPEZE—1 = QEPES

and so the equality as = appips implies the existence of dy € Ag and
Y,y2 € 5 such that ¢ = doy1, arpr = days and 15 = 725. So we have

f(z1t) = f(aqt) and

a = day
dyyry = arpe 1S = Y5
arqr = dizvr pps = gl
a’ = d1$2.

b) ¢ = s. Then there exists [ € {1,...,m} such that z_; = t and
2l =244 =...= 2, =1 = s Discussing as in the case a) we get the ‘dual’
result.

¢) s’ = s and t' = t. Then as = a"us, a’'t = a"'vt and f(us) = f(vt).
Applying Proposition 2.6 we get ay,aq € Ag, p1,p2, 41,492 € 5 such that

a4 = a1p;
1"
@@ = au p1s = 1S
!
a4 = azp2
1"
az2q2 = a’v  pat = gat,

Sufficiency. We use Lemma 2.10 for proving weak homoflatness of
Ag. Suppose that af(s) = d'f(t) for some a,a’ € Ag, s,t € S and a
homomorphism f : ¢(SsU St) — ¢5. By assumption there exist elements
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a’,a1,a9 € Ag, u,v,p1, P2, q1,q2 € S such that one of the three possibilities
holds.
If f(us)= f(vt) and

a4 = a1p;
—_ 1" —_
@@ = e p1s = @18
!
a4 = azp2
—_ 1" —_
azq2 = a’v  pat = gat,

then
AaRSsS=ap Qs=a ApsS=a1 @ q@s=a1q1 @s=ad"u®s=d @ us

and, similarly,
a Rt = a” ® vt

in Ag ® S(SS U St)
If f(us) = f(vs) and

4 = aip;
arqr = azpz pit = @it
azqy = a’v pat = qas
a = a'u,
then
a®s:a"u®s:a"®us
and

/Ot = apr@t=a1@pit=a1 @@l =a1q1 Ot = azp; Ot = ay @ pat

= a @ @ps=aqp®s=d"v®s=d @ uvs

in Ag ® S(SS U St)

The third case is analogous to the second.

So in any case we have f(us') = f(vt'), a ® s = " ® us’ and
d @t =a" @vt'in Ag ® s(S5s U St) for some a” € Ag, u,v € 5 and
st e{s,t}. 1

For cyclic acts we have the following description of weak homoflatness.

Lemma 2.12 Let p be a right congruence on a monoid S. The cyclic right
S-act S/p is weakly homoflat if and only if for all elements s,t € S and

31



all homomorphisms f : s(Ss U St) — g5, if f(s)pf(t) then there exist
w, v, P1, P2, 1, G2 € S such that either f(us) = f(vt) and

[1] = [m
[;] = [u] pis = qs
[1] = [p2]
(2] = [v]  pat = qat,

or f(us) = f(vs) and

[1] = [p]
(1] = [p2] mt = qut
(2] = [v]  pat = gas
[1] = [u],
or f(ut) = f(vt) and
[1] = [p]
(1] = [p2] m1s = qs
(2] = [u] p2s = qat
[1] = [v].

Proof. Necessity. Let 5/p be weakly homoflat. Suppose that f(s)pf(t)
for some s,t € S and a homomomorphism f : g(SsU St) — 5. Then we
have the equality [1]f(s) = [1]f(¢) in S/p. By Lemma 2.11 there exist
a” ay,ag, u' 'y, ph, gy, g € 5 such that either f(u's) = f(v't) and

1] = [a1]p]
[a1]lgy = [a"]W pis = ¢is
[1] = [az]Plz
[as]gy = [a"]v"  pht = g¢5t,
or f(u's) = f(v's) and
1] = [a1]p}
lar]q] = [ao]ph,  pit = qit
[aglgy, = [a"]v"  pht = g¢5s
[1] = [a"]W,
or f(u't) = f(v't) and
[1] [a1]p}
[a1]qy = [a2lphy  pis = s
aslgy = [a"]u’  pys = g5t
[1] = [a"]".



The claim follows if we use that p is a right congruence, f is a homomor-
phism and denote py = a1p}, 1 = @14}, p2 = azph, g2 = azqs, u = a"u’ and
v=a"v.

Sufficiency. We use Lemma 2.11 to prove that 5/p is weakly homoflat.
Suppose that [a] f(s) = [@] f(t) for some a,a’,s,t € S and a homomorphism
f1(9sUSt) — ¢S. Then f(as)pf(a't). Denoting h = f|sqsusare the restric-
tion of f to the left ideal SasU Sa't, we have h(as)ph(a't). By assumption
there exist elements u, v, p1, p2, q1, g2 € S such that either h(uas) = h(va't)
and

1
] pras = qas
2
vl padt = qua't,

or h(uas) = h(vas) and

] =1

| = [p2] mdt = qud't
[2] = [v]  po2d't = quas

] = [u]

or h(ua't) = h(va't) and

[1] = [pi]
(1] = [p2] pras = quas
[g2] = [u] pras = ¢qa't
[1] = [o].

Using that p is a right congruence and the definition of A, we obtain either

fluas) = f(va't) and

[a] = [l]pra
[lgie = [1]ua plas = qras
(@] = [1]pae’
[1]gea [1Jva"  pod't = ¢ga't,
or f(uas) = f(vas) and
[@') = [1]pse’
[lgia’ = [1]ped’ pra’t = qa't
[1]gza = [1]va paa't = qaas
[a] = [1]ua,
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or f(ua't) = f(va't) and

[a] = [1]p1a
[llgia = [1]pa  pras = qas
[lgea’ = [1Jua’  poas = ¢a't
[d] = [1]vd.

Hence S/p is weakly homoflat. &

Definition 23 We say that a right ideal K of a monoid S is strongly left
annihilating if for all s,t € S\ K and for all homomorphisms

fis(SsUSt)— g9
fs), f(t) € K = [(s) = f(1).

Every strongly left annihilating right ideal is left annihilating. Indeed, if
at,yt € K fort € S and ,y € 5\ K then pi(z), p(y) € K. This implies, if
K is strongly left annihilating, that zt = yt. Hence K is left annihilating.

It turns out that not all left annihilating ideals are strongly left annihi-
lating.

Example 2 Let S be an annihilating chain of semigroup S; = {1}, a
right zero semigroup So = {s,t}, a left zero semigroup 53 = {z,y} and a
semigroup 94 = {0} (1 > 2 > 3 > 4). Consider a right ideal K = {z,y,0}.
Suppose that uz,vz € K, z € S, u,v € S\ K. Then z € K and
uz = vz = z. Hence K is left annihilating.
Define a mapping f: S5sU St — S by

flus) = ua,
flut) = uy,

w € 5. It is straightforward to check that f is a homomorphism of left
S-acts. Now f(s), f(t) € K but f(s) # f(t). Thus K is not strongly left

annihilating.

Lemma 2.13 Let K be a right ideal of a monoid S. The right Rees factor
act S/K is weakly homoflat if and only if S is right reversible, K is left
stabilizing and K is strongly left annihilating.

Proof. Necessity. Let /K be weakly homoflat. Then S/ K is weakly
flat. Hence S is right reversible and K is left stabilizing by Proposition
1.11. Let us show that K is strongly left annihilating. If K = S then the
statement is obvious. Assume that K C 5. Then 1 ¢ K and hence the
pr-class of identity element is a singleton. Suppose that f(s), f(¢) € K for
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some s, € 5\ K and a homomorphism f : g(SsU St) — 5. This means
that f(s)px f(t). By Lemma 2.12 there are three possibilities.
a) There exist u, v, p1, p2, ¢1,q2 € S such that f(us) = f(vt) and

1] =

[ [p1
[,] = [u] pis = qs
[1] = [p2]
[2] = [v]  pat = qat.

Consequently p1 = 1 = py. Now s € K and s = ¢ys imply that ¢ € K,
therefore ¢; = u. Analogously g; = v. Thus

f(s) = flars) = flus) = fvt) = f(gat) = f(1).
b) There exist w, v, p1, p2,q1,¢2 € S such that f(us) = f(vs) and

[1] = [p]
(1] = [p2] mt = qut
(2] = [v]  pat = gas
[1] = [u].

Then p; = 1 and t = ¢1t, which, together with ¢ ¢ K, implies that ¢; ¢ K.
Consequently ¢ = py and t = ¢1t = pat = gos. This again implies that
g2 € 9, hence v = ¢z and t = vs. Since [1] = [u] here means that v = 1, we
have got

f(s) = flus) = f(vs) = f(2).

c¢) This case is similar to the previous one.

Sufficiency. Let 5 be right reversible, K left stabilizing and strongly
left annihilating. We use Lemma 2.12 to show that S/K = 5/pk is weakly
homoflat. Suppose that f(s)px f(t) for s, € S and a homomorphism
fis(8sUSt) — g5.If f(s) = f(t) then the elements u, v, p1,p2, ¢1,¢2 We
need can all be taken equal to 1. For the case f(s), f(t) € K let us consider
the following four possibilities.

a) s,t € K. Right reversibility of S implies that there exist u/,v' € 9
such that u's = vt. Since K is left stabilizing, there exist ¢;,q2 € K such
that s = ¢ and ¢ = ¢ot. Take arbitrary z € K and denote u = 2u’, v = 2v’.
Then we have

Jlus) = J(=u's) = f(z0't) = f(o1)

and
[1] = [1]
(] = [u] 1s = qus
[1] = [1]
[q2] [v] 1t = gat.
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Hence S/ K is weakly homoflat.

b)s € K,t ¢ K.Right reversibility of S implies the existence of elements
u',v" € 9 such that u's = v't. Since K is a left stabilizing right ideal, there
exist ¢1,u € K such that s = ¢15 and uf(t) = f(t). Take arbitrary z € K
and denote py = zu/, ¢ = zv’. Now we have

f(ut) = f(1t)

and
[1] = [1]
(1] = [p2] Is = qis
(2] = [u] p2s = qat
[1] = [1].

Hence S/ K is again weakly homoflat.

c)s ¢ K,te K. This case is analogous to the previous one.

d) s ¢ K,t¢ K. Since K is strongly left annihilating, f(s) = f(¢) and
we are done as before. |

Lemma 2.14 The following assertions are equivalent for a monoid 5':
1. Og satisfies condition (P).
2. Og is weakly homoflat.
3. Og is weakly flat.
4. 5 is right reversible.

Proof. 2. = 3. isclear. 3. = 4. and 4. = 1. come from Corollary 1.12.
1. = 2. By Corollary 1.12 Og satisfies condition (P) if and only if ' is

right reversible. Clearly S is a left stabilizing and strongly left annihilating

right ideal of 5. Hence ©@g = 5/5 is weakly homoflat by Lemma 2.13. 1

Let us show that weak homoflatness and principal weak homoflatness are
different notions.

Example 3 (Principal weak homoflatness does not imply weak homoflat-
ness.) Let K be a right zero semigroup with two or more elements and let
S = K' be a monoid obtained from K by external adjoining of identity.
Clearly K is a right ideal of S and the Rees factor act S/ K is not weakly
flat (hence it cannot be weakly homoflat), because S is not right reversible.
But S/ K is principally weakly homoflat. To see this, let us use Lemma 2.8.
Clearly K is a left stabilizing right ideal, so it remains to show that K is
left annihilating. Suppose that zt,yt € K for some 2,y € S\ K and t € §.
Since |5\ K| = 1, we immediately get that + = y = 1 and hence a2t = yt.
Thus K is left annihilating, too.
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Moreover, flatness does not imply weak homoflatness, because otherwise
flatness would imply principal weak homoflatness, which is not the case
(see Example 1). However, the question whether weak homoflatness implies
flatness remains open here.

2.8 On acts satisfying condition (P)

Here we see that the cells in the third column and the upper cell of the
second column of Scheme 1 denote the same class of right 5-acts — the class
of all acts satisfying condition (P). We also give an example of a weakly
homoflat right S-act which does not satisfy condition (P).

Proposition 2.15 The following assertions are equivalent for a right

S-act Ag:

1. The corresponding ¢ is surjective for every pullback diagram
P(M,N, f.9.Q).

2. The corresponding ¢ is surjective for every pullback diagram
P(M, M. f,9,Q).

3. The corresponding ¢ is surjective for every pullback diagram

P(I,1,f,q,5), where I is a left ideal of 5.

4. The corresponding @ is surjective for every pullback diagram
P(Ss,5s,f,9,5), s €85.
5. The corresponding ¢ is surjective for every pullback diagram
P(S,5,f,9.5).
6. The corresponding ¢ is surjective for every pullback diagram
P(M7 M7 f7 f?Q)'
7. Ag satisfies condition (P).
Proof.  The proof of the equivalence of the conditions 1, 2, 3, 4, 5 and
7 follows directly from the proof of Lemma 2.2 of [2]. The implication
2. = 6. is obvious. Let us show that 6. = 7.
Assume that ¢ is surjective for every pullback diagram P(M, M, f, f,Q).

Suppose that as = a’s’, a,a’ € Ag, s,s' € 5. Consider a mapping
fs(51US52) — s which is defined by

f(xl) = s,
f($2) = x‘slv
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z € S (here we use the same notation as introduced after Lemma 1.15).
Then

uf(er) = w(zs) = (ux)s = f((ux)) = fluw),

and analogously we obtain uf(z3) = f(uzz) for all u,z € 5. That means,
f is a homomorphism of left S-acts. Moreover, as = a’s’ means that
a® f(ly) =d @ f(13) in Asg ® g5. Using surjectivity of ¢ for the pullback
diagram P(Sll_ls%sll_ls%fvf?s) we get a’ € AS? U, v € S? Zv] € {172}
such that f(u;) = f(v;),a®1y = " ®u; and ¢’ @1, = ”®v; in tensor prod-
uct As® s(51U52). The equality a®1; = a” ®u; means by Lemma 1.1 that
there exist a natural number n, elements ay,...,a,_1 € Ag,by,...,b,_1,
S1yenvySpstyye.oyty_y €5 and indices iy,...,7,—1 € {1,2} such that

a = a8y S1 11 = tl(bl)il
a1ty = a8 s2(b1)i;, = ta(b2)s,
Gpqtp1 = a//Sn Sn(bn—l)in_l = U;.

Since 57 and 53 are disjoint, the equality s117 = #1(b1);, implies that i; = 1.
Analogously we get that ¢3 =3 =...=14,_1 = 1 and then also : = 1. Now
all the equalities in the right-hand column above hold in S;. Using that o4
is a monomorphism of left S-acts we obtain

a = a8y 811 = tlbl
aity = azsy 5201 = t2by
— " —
p1lp1 = a8, Snbn—l = u.

which means that e @1 = ¢’ @ u in As® 55. Analogously we get 7 = 2 and
a @1 =a"Q@vin As ® sS5. By Lemma 1.3 this means that ¢ = «”u and
a’ = a"v. Finally, f(u1) = f(vy) yields us = vs’ by the definition of f. &

Using this proposition we see that conditin (P) implies weak homoflatness.
This implication is strict.

Example 4 (Weak homoflatness does not imply condition (P).) Let us
consider a free monoid K = s* generated by one element s and let e = s°
be the identity element of K. Let § = K be a monoid obtained by external
adjoining of identity 1 to K. Clearly K is a right ideal of 5. The Rees factor
S/K does not satisfy condition (P) (note that S/K is flat), because & # 5
and |K| > 1. Let us show that S/K is weakly homoflat. Let I # S be a
left ideal of S. Then I C K. If k is the minimal nonnegative integer such
that s* € K, then I = Ss". So all left ideals of S are principal. By the
definitions this means that a right S-act is weakly homoflat if and only if it
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is principally weakly homoflat. Consequently, to show that S/ K is weakly
homoflat, it is sufficient to check that at,yt € K witht € 5, 2,y € S\ K
implies zt = yt. But this is evident since S\ K = {1}.

2.9 Weakly pullback flat acts

Here we show that the three lowest cells in the rightmost column of Scheme 1
denote the same class of right S-acts. We find another description of a right
S-act (cyclic right S-act, right Rees factor act) having the corresponding
property and give examples showing that this class lies properly between
the classes of all pullback flat right S-acts and all right S-acts satisfying
condition (P).
First, let us introduce a generalization of condition (E):
(E)  (Va € Ag)(Vs, s,z € S)as=as' Nsz=5'z=
(Fa’ € Ag)(Fu € S)(a = a'u A us = us'))

and one more condition on a right S-act Ag:

(PF") (Va,d’ € Ag)(Vs, s, t, 1, z,w € 9)
(sz=twAs'z=twhas=ds Nat = d't' =
(Fa” € As)Fu,v € S)a=a"und =a"vAus=vsAut =0vt")).

We also need the following lemma.

Lemma 2.16 ([2]) If As satisfies condition (P) and a @ m = o’ @ m' in
As ® sM for a left S-act sM, a,a’ € Ag, m,m’' € sM then there exist
a’ € As and u,v € S such that a = a"u, o’ = a”"v and um = vm/.

Proposition 2.17 The following assertions are equivalent for a right

S-act Ag:
1. The corresponding ¢ is surjective and injective for every pullback

diagram P(I,1,f,qg,5), where I is a left ideal of S.

2. The corresponding o is surjective and injective for every pullback

diagram P(Ss,Ss, f,g9,95),s € 5.

3. The corresponding o is surjective and injective for every pullback

diagram P(S5,S, f,g,95).
4. Ag satisfies condition (PF').
5. Ag satisfies conditions (P) and (E').
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Proof. 1. = 2. = 3. is clear.
3. = 4. Let the corresponding ¢ be surjective and injective for every
pullback diagram P(S, S5, f,¢,5). Then Ag satisfies condition (P) by Propo-

sition 2.15. Let
sz = tw, as = a's,
141

sz = t'w, at = d't’,
a,a’ € Ag, 8,8, 1,t', 2z, w € 5. Take the homomorphisms p., p, : s5 — 55.
Then p.(s) = pw(t), p.(s') = pw(t’) and by Lemma 1.3 ¢ @ s = ¢’ @ s’ and
a®t=d®t in Ag® g¢S. This means that ¢(a®(s,t)) = ¢(a’ @ (s',1')) for
the ¢ corresponding to the diagram P(s.5, 55, p2, pw, s5). Using injectivity
of ¢ we get the equality a @ (s,t) = o’ ® (¢/,t') in Ag ® sP, where

sP=A{(u,v) € 5 x5|pz(u) =pu(v)} ={(u,v) € 5 x5 | uz=ovw}.

Since Ag satisfies conditon (P), by Lemma 2.16 there exist " € Ag, u,v € 9
such that ¢ = a"u, ¢’ = a"v and u(s,t) = v(s',t'). But then us = vs’ and
ut = vt'.

4. = 5. Condition (P) follows by taking t = s, ¢ = s’ and z = w =1
in condition (PF’). Let us show that condition (E’) holds. Suppose that
as = as', sz = sz, a € Ag, 8,8,z € 5. The equalities

sz = lsz, as = as,

s’z = 1sz, al = al,

imply the existence of @’ € Ag and u,v € S such that us = vs’, ul = vl
and a = a"u.

5. = 1. Since Ag satisfies condition (P), the corresponding ¢ is surjec-
tive for every pullback diagram P([,1, f,¢,5) by Proposition 2.15. Let us
show that ¢ is also injective for every pullback diagram P(I, 1, f,g,5). Take
such a diagram and suppose that there exist 7,4',7,7' € I and a,a’ € Ag
such that

fi) = g(j), a®i=d@iin As® sl

fG@) = 90", avj=dojinAsesl
Then the equalities ¢ @ i = '’ @ ¢ and ¢ ® j = ¢’ ® j" hold also in Ag ® g5
and therefore ai = i’ and aj = a’j’ by Lemma 1.3. Using condition (P) we
get from the equality ai = a'7' that there exist uy, v € 5 and b € Ag such
that @ = buq, @’ = bvy and uyi = vy1'. Therefore buj = aj = a'j' = bvyj'.
Once more applying condition (P) we get from the equality buij = bvyj’
that there exist ug,v; € § and d € Ag such that b = duy = dvy and
usurj = vov1j’. So

uau1g(j) = g(ugurj) = g(vav1y’) = v2v19(J’) = vavr f(2') = va f(v1?')
= vz f(w1) = vaun f(2) = vaurg(j)-
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The equalities dug = dvy and ua(u1g(7)) = v2(u19(j)) yield by condition
(E") the existence of w € S and a” € Ag such that d = a"w and wuy = wo,.
Hence

a®(1,7) =buy @ (1,7) = duguy @ (i,7) = a"wugus ® (7,5)
= a" @ (wuguil, wugurj) = ¢’ @ (wvavi’, wogvyj’)
= a""wogvy @ (¢, §') = dvavy @ (7, §7) = by ® (7, §)
— a/ ® (i/7j/)

in tensor product Ag ® sP, where

sP=A(m,n) e sl xgl| f(m)=g(n)}
Thus ¢ is injective for the pullback diagram P(I,1, f,g,5). 1§
Equivalence of conditions 3, 4 and 5 was proved in [27].

Definition 24 We say that a right S-act Ag is weakly pullback flat, if the
corresponding ¢ is surjective for every pullback diagram P([,1, f,¢g,59),
where [ is a left ideal of 5.

Since condition (E) implies condition (E’), it follows from Theorem 1.9 and
Proposition 2.17 that pullback flatness implies weak pullback flatness.

Lemma 2.18 Let p be a right congruence on a monoid S. The cyclic right
S-act S/p is weakly pullback flat if and only if it satisfies condition (P) and

(Vs, s,z € S)(sps' A sz =8'2= (Fue S)(upl A us=us)).

Proof. Necessity. Let S/p be weakly pullback flat. By Proposi-
tion 2.17 S/p satisfies conditions (P) and (E’). Now suppose that sps’
and sz = s’z for some 5,5,z € 5. Then [1],5 = [1],s'. Condition (E’) im-
plies the existence of @, u’ such that [1], = [z],u’ and u’'s = u’s’. Denoting
u = zu' we have upl and us = us’.

Sufficiency. By Proposition 2.17 it is sufficient to show that 5/p sat-
isfies condition (E’). Suppose that [z],s = [2],s’ and sz = s’z for some
x,s,8,z € 5. Then (2s)p(xs’) and (2s)z = (2s')z. Hence by the assump-
tion there exists u € S such that upl and uzs = wws’. Consequently,
(], = [1],uz and (uz)s = (uz)s’. 1

Definition 25 Let S be a monoid and P C 5 its submonoid. We shall say
that the submonoid P is weakly left collapsible if

(Vs,s' € P)(Vz € S)(sz = 5"z = (Ju € P)(us = us')).
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Every left collapsible submonoid is weakly left collapsible. The converse is
not true: take a nontrivial group as an example.

Lemma 2.19 Let K be a right ideal of @ monoid 5. The right Rees factor
act S/K is weakly pullback flat if and only if |K| = 1 or K = 5 is right
reversible and weakly left collapsible.

Proof. Necessity. Since 5/K is weakly pullback flat, it satisfies con-
dition (P). By Proposition 1.11 either || =1 or i = § is right reversible.
If K = 5 then spis’ for all s,s" € S and hence sz = §'z, s, 8, 2 € 5 implies
by Lemma 2.18 the existence of u € S such that us = us’. This means that
S is weakly left collapsible.

Sufficiency. If |K| = 1 then S/K % 5 is free and hence also weakly
pullback flat. Suppose that K = S5 is right reversible and weakly left
collapsible. Then S/K 2 Og. By Corollary 1.12 S/ K satisfies condition
(P). By Lemma 2.18 it remains to show that sz = 'z, s,s', 2 € S implies
the existence of u € S such that us = us’, but this is exactly weak left
collapsibility of 5.

For the one-element right S-act Lemma 2.19 yields the following result.

Corollary 2.20 The one-element right S-act Og is weakly pullback flat if
and only if S is right reversible and weakly left collapsible.

Example 5 (Weak pullback flatness does not imply pullback flatness.) Let
S be a nontrivial group. Then it is right reversible and weakly left collapsi-
ble and hence the one-element right S-act @g is weakly pullback flat. But
it cannot be pullback flat, because it does not satisfy condition (E). More-
over, this means that condition (E’) does not imply (E), because otherwise
weak pullback flatness would imply pullback flatness.

To show that condition (P) and weak pullback flatness are different concepts
we need a lemma.

Lemma 2.21 ([27]) Let S be a right collapsible monoid. Then every
weakly pullback flat right S-act Ag is pullback flat.

Proof. Let Ag be weakly pullback flat. It is sufficient to show that Ag
satisfies condition (E). Suppose that as = as’, a € Ag, s,s' € S. By the
right collapsibility of S there exist z € S such that sz = s'z. Since Ag
satisfies condition (E’) by Proposition 2.17, there exist a’ € Ag, u € S such
that @ = a’u, and us = us’. But this means that Ag satisfies condition (E)
and hence it is pullback flat. 1
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Example 6 (Condition (P) does not imply weak pullback flatness.) Let
T = s* be a monogenic free monoid generated by an element s and let
be a monoid obtained from T by external adjoining of zero 0. Since 5 is
right collapsible, a right S-act is weakly pullback flat if and only if it is
pullback flat. Let us consider the monocyclic right S-act S/p(1,s), where
p(1,s) is the smallest right congruence identifying the elements 1 and s. By
[1], Proposition 2.10, this act satisfies condition (P) and it is pullback flat
if and only if s is an aperiodic element. Since s is not an aperiodic element,
S/p(1,s) cannot be pullback flat and hence it cannot be weakly pullback
flat either.

2.10 On pullback flat acts

Finally we note that the two upper cells in the rightmost column of Scheme 1
denote the class of pullback flat acts.
From [2] we have the following condition on a right S-act Ag:

(PF) (Va,d € Ag)(Vs,s',t,t' € S)(as=d's' Nat = d't =
(Fa” € As)Fu,v e S)a=a"und =a"vAus=vsAut =0vt")).

It is easy to see that condition (PF') implies condition (PF’).

Proposition 2.22 The following assertions are equivalent for a right
S-act Ag:
1. The corresponding ¢ is surjective and injective for every pullback
diagram P(M,N, f,q,Q).
2. The corresponding o is surjective and injective for every pullback
diagram P(M, M, f,g,0Q).
3. Ag satisfies conditions (P) and (E).
4. As satisfies condition (PF).
Proof.  The equivalence of conditions 1 and 3 was proved in [32]. The
equivalence of all four conditions follows from Theorems 2.3 and 2.4 of [2]. It
even follows that these conditions are equivalent to the surjectivity and in-

jectivity of the corresponding ¢ for the pullback diagram P(S, 5, ¢y, cs,0),
where © is the one-element left S-act and ¢4 : 5 — © is the constant

mapping. |
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2.11 Conclusion
After showing which properties of acts under consideration are the same

and which are different, we have come to the following scheme for the
relationships between them:

PF

P)

/ |
F HF
W PWHF

/

PWF

F

N

Scheme 2
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Here the abbreviations stand for the following properties of S-acts:

PF — pullback flatness

WPF — weak pullback flatness

(P) — condition (P)

F — flatness

WF — weak flatness

WHF — weak homoflatness

PWHF — principal weak homoflatness
PWF — principal weak flatness

TF — torsion freeness.

A line between two properties means that the property at the higher end of
the line implies the property at the lower end of the line and the converse
is not true.

Scheme 2 is not the only possible one to depict flatness properties lying
between strong flatness and torsion freeness. There are different require-
ments (e.g. only injectivity of ¢ for some kind of pullback diagrams) that
are not considered here at all. Moreover, there are well-known flatness prop-
erties (condition (E), equalizer flatness) that do not appear in Scheme 2.
This leaves open the possibility of composing a scheme which includes all
so far studied flatness properties in terms of preserving pullbacks.
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3 ON HOMOLOGICAL CLASSIFICATION

In this section we consider the homological classification. That means we
consider the questions like “When all right acts with a property X have an-
other property Y?”7 and “When all right acts have property Y?”. We seek
for answers referring only to internal properties of a monoid over which
these acts are considered. The properties we consider here are torsion free-
ness, principal weak flatness, principal weak homoflatness, weak homoflat-
ness, condition (P), weak pullback flatness, pullback flatness, projectivity
and freeness. We have added projectivity and freeness to make the pic-
ture more complete, and we almost do not look at the questions related to
flatness and weak flatness.

There are several possible levels for considering problems of homological
classification. We here try to classify monoids by properties of right Rees
factor acts, cyclic right acts and arbitrary right acts over them. In some
cases, where the answer to a homological classification problem is not known
for the general situation, we try to clarify the situation in the (simpler) class
of idempotent monoids.

3.1 Principal weak flatness

Here we give a characterization of those monoids over which all torsion free
right S-acts are principally weakly flat.
First we say some words on almost regular monoids.

Definition 26 We say that an element s of a monoid 5 is left almost regu-

lar if there exist elements 7,7y, ..., 7m0, S1,...,5, € 5 and right cancellable
elements ¢q,..., ¢, € 5 such that
$1€1 = S
S22 = S1T2
SmCm = Sm—-1Tm
5 = Sp,Ts.

A monoid S is left almost regular if all its elements are left almost regular.

Almost regular monoids were introduced in [9] where it was proved that
all divisible right S-acts are principally weakly injective if and only if §
is right almost regular. (In [9] those monoids were called simply almost
regular and the indices were used in a slightly different way.) The definition
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of a left almost regular monoid is obtained by dualization of the definition of
a right almost regular monoid in the sense that ‘left cancellable’ is replaced
by ‘right cancellable’ and the order of factors in products is reversed.

Later it turns out that if we require the principal weak flatness of all
torsion free right acts then we get the class of left almost regular monoids.
This result may be considered as further evidence of some kind of duality
of the properties of acts grouped around projectivity and injectivity.

It is easy to see that if every element of S is either regular or right
cancellable then § is left almost regular — a fact which holds also for left
PP monoids. PP monoids were first investigated by Kilp [14], and the
term was introduced by Fountain in [8] .

Definition 27 A monoid 5 is called left PP monoid if for every s € §
there exists an idempotent e € § such that es = s and for all u,v € 9,
us = vs implies ue = ve.

It turns out that the class of left almost regular monoids lies properly be-
tween the class of left PP monoids and the class of monoids, every element
of which is either regular or right cancellable.

Proposition 3.1 ([26]) Fvery left almost regular monoid is a left PP
monoid.

Proof. Let 5 be a left almost regular monoid and s € 5. Then there
exist elements r,71,...,7m,51,...,%, € 5 and right cancellable elements
€1,...,Cp € 5 such that

$1€1 = S
$2€2 = 85173
SmCm = Sm—-1Tm
S = S§,TSs.

From the first and the last equality we get
81€C1 = 8T1 = Sy, TST1 = SpTS1Cq.

Since ¢q is right cancellable, sy = s,,7s1. Using this, from the second equal-
ity we get

89Cy = 51T = Sy TS1T2 = Sy TS2C2,
which implies s; = s,,7s3. Continuing in this manner we finally obtain
Sm = SmTSm, and hence e = s,,,r is an idempotent such that es = s.
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Now let us = vs. Then
US1€C1 = UST1 = VS8T1 = vS1Cq
and hence usy = vsy. Further,
US2Co = US1Ty = VST = VS592Cy

implies usy; = vsy and continuing in this manner we get us,, = vs,,. Hence
US,, T = v8,,r and thus 5 is a left PP monoid. 1

The following example shows that the class of left almost regular monoids
is a proper subclass of the class of left PP monoids.

Example 7 Let K = s* be a free monoid with a generating element s
and identity element e. Let § = K1, i.e. let S be obtained from K by the
external adjoining of the identity element 1 (see Example 4). Then S is
commutative and one can see that it is a PP monoid by direct checking
or by applying a result of [14], which says that a commutative monoid is a
PP monoid if and only if it is a semilattice of cancellative monoids. But §
cannot be an almost regular monoid, because the only cancellable element
is 1 and hence the almost regularity of s would mean the existence of the
elements r,71,..., 7y, 81,...,8, € 5 such that

S = SpTS = Sy 1TmTS = ooo = 81T« TS = STAT2 . . . T TS,
which contradicts the non-regularity of s.

There exist left almost regular monoids, which have elements that are nei-
ther regular nor right cancellable.

Example 8 Let S = (e,s,c|€? = e,es = se = ec = ce = 8,5¢ = ¢s = s°)U
{1}. It is not difficult to see that S is a commutative monoid consisting of
the elements of the form 1,e, s* (k € N) and ¢* (k € N). The elements of the
form ¢* and 1 are the only cancellable elements, whereas 1 and e are the
only regular elements. But since ec” = s* and s*¥ = es”, the elements s*
are also almost regular, although they are neither regular nor cancellable.

Thus 5 is almost regular.

We shall now give a construction of a right ideal of a monoid S with some
specific properties.

Take an element s € 5. Let L(s) be the subset of S consisting of all
elements ¢ € § for which there exist elements 71,...,7,, S1,...,8m_1 € S
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and right cancellable elements ¢q,..., ¢, € 5 such that

$1€1 = S
S2C2 = 8172
1Cr, = Sm—1Tm-

Since s1 = s1, we see that s € L(s) and so L(s) is nonempty. Let Krp(s)
be the right ideal of S generated by the set L(s), i.e.

I(TF(S)I U ts.
teL(s)

Lemma 3.2 For every s € S the right ideal Kt (s) is the smallest right
ideal J containing the element s such that the right Rees factor act S/J is
torsion free.

Proof. As we saw, K7p(s) is a right ideal containing s. Let us show
that S/K7p(s) is torsion free. Suppose that s'c € Krp(s) for s € §
and right cancellable ¢ € S. Then s'¢ € t5 for some t € L(s), hence
there exist r1,...,7m, Pm+1, 515 - -, Sm—1 € 5 and right cancellable elements
€1,...,Cp € 5 such that

$1€1 = S

S2C2 = 8172

ey = Spm_1Tm
se = trpan.

This means s’ € L(s) and so s’ € K7p(s). Thus S/K7p(s) is torsion free
by Proposition 1.11.

Now suppose that K is a right ideal of S containing s such that 5/K
is torsion free. We want to show that Krp(s) C K. Take tz € Krp(s),
t € L(s), z € 5. Then there exist r1,...,7m,51,...,5m—1 € S and right

cancellable elements ¢q,..., ¢, € 9 such that
$1€1 = S
S22 = S1T2
1Cr, = Sm—1Tm-

Now s € K implies sy¢q; € K. Since S/K is torsion free, s; € K by Propo-
sition 1.11. Analogously s3,...,8,-1,t € K and hence tz € K. 1
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If 2,y € § then denote

I(TF(w, y) = I(TF(w) U I(TF(Q/)-

As in the proof of Lemma 3.2 one can see that Krpp(z,y) is the smallest
right ideal containing elements  and y such that the right Rees factor act
by it is torsion free.

The next proposition is the reason why we have been discussing almost
regular monoids.

Proposition 3.3 ([26]) The following assertions are equivalent for a
monoid S':

1. All torsion free right S-acts are principally weakly flat.
2. All cyclic torsion free right S-acts are principally weakly flat.
3. All torsion free right Rees factor acts of S are principally weakly flat.

4. 5 is a left almost reqular monoid.

Proof. 1.= 2.= 3.is clear.

3. = 4. Suppose all torsion free right Rees factor acts are principally
weakly flat. Take an element s € S and the right ideal K75(s). By Lemma
3.2 the right Rees factor act S/K7p(s) is torsion free. By assumption
S/ K7p(s) must be principally weakly flat. Hence by Proposition 1.11 for
s € Krp(s) we can find tr € Krp(s), where ¢t € L(s),r € 5, such that
trs = s. The last equality together with the fact that ¢ € L(s) yields that
s is left almost regular.

4. = 1. Let 5 be left almost regular. Assume that Ag is a torsion free
act. Let as = a's, for a,a’ € Ag,s € 5. Since s is left almost regular, there
exist elements r,71,...,7m,51,...,%, € 5 and right cancellable elements
€1,...,Cp € 5 such that

$1€1 = S
$2€2 = 85173
SmCm = Sm—-1Tm
S = S§,TSs.

Using the first equality we get

/ /
as1¢1 = asr1y = a 8r1 = a $1¢y.
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Since Ag is torsion free, we get as; = a’s;. Analogously we obtain the
equalities asy = a'sg, ..., as,, = a's,,. Then, clearly, as,, 7 = a's,,7. Now
we have

ARS=aRSuTs =S, T RS =a'$,7Qs=0a Qsprs=a Qs

in the tensor product As® g(.5's) which means that Ag is principally weakly
flat by Lemma 1.6. 1

To prove the following corollary we need a lemma.

Lemma 3.4 ([23], [20]) The following assertions are equivalent for a
monoid S':

1. All right S-acts are torsion free.
2. All cyclic right S-acts are torsion free.
3. All right Rees factor acts of S are torsion free.

4. Fuvery right cancellable element of S is right invertible.

Equivalence of conditions 1, 2 and 4 was proved in [23], and the equivalence
of 3 and 4 is in [20].
We can now give a new proof of the following result.

Corollary 3.5 ([15]) The following assertions are equivalent for a monoid

S':
1. All right S-acts are principally weakly flat.
2. All cyclic right S-acts are principally weakly flat.

3. All right Rees factor acts of S are principally weakly flat.

4. 5 is a regular monoid.

Proof. 1. = 2. = 3. is clear.

3. = 4. If all right Rees factor acts are principally weakly flat then all
right Rees factor acts are torsion free and all torsion free Rees factor acts
are principally weakly flat. Hence by Lemma 3.4 every right cancellable
element of § is right invertible and by Proposition 3.3 .5 is left almost
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regular. Take s € 5. Then there exist elements 7,7, ..., 75, $1,...,8, € 5

and right cancellable elements ¢q,..., ¢, € 5 such that
$1€1 = S
S22 = S1T2
SmCm = Sm—-1Tm
5 = Sp,Ts.

Multiplying the corresponding equality by the right inverse CZ»_1 of ¢;,

ie{l,...,m},we get
1

$1 = sricq
Sy = 517‘202_1
_ -1
Sm = Sm—1TmCp, -
Hence
— — -1, _ -1 1. _
§ = SpTS = Sy_1TmCpp, TS = Spp—2Tm—1C_ 1TmCp TS = ...

-1

-1 -1
= 87T1C;  ...Tm=1Cp_1TmCp, TS,

i.e. s is regular.

4. = 1. If S is regular then it is left almost regular and every right
cancellable element is right invertible. Hence all right Rees factor acts are
torsion free by Lemma 3.4 and all torsion free right Rees factor acts are
principally weakly flat by Proposition 3.3. Thus all right Rees factor acts
are principally weakly flat. 1

3.2 Principal weak homoflatness

In this subsection we characterize monoids over which all (all torsion free,
all principally weakly flat) right Rees factor acts are principally weakly
homoflat, monoids over which all torsion free right acts are principally
weakly homoflat and idempotent monoids over which all right Rees factor
acts are principally weakly homoflat. We see that if all torsion free right
S-acts are weakly homoflat then all torsion free right S-acts are weakly
pullback flat and if all right S-acts are principally weakly homoflat then all
right S-acts are weakly pullback flat.
We start with Rees factor acts.

Proposition 3.6 The following assertions are equivalent for a monoid S':

1. All principally weakly flat right Rees factor acts of S are principally
weakly homoflat.

52



2. Bvery left stabilizing right ideal of S is left annihilating.
3.

(Vt,$,y,$0,y0,$1,y1,$2,y2, S S)

((zo = 2t A (Vi € No)(2ig12s = 2;)A

Yo = yt A (Vi € No)(Wi1¥i = i) N 2o # %) =

(Ip € {z0,z1,.. .y U{yo,v1,... )3z € )z =pzV y=pz)).

Proof. 1. = 2. Let K be a left stabilizing right ideal of 5. Then
the Rees factor act S/K is principally weakly flat by Proposition 1.11.
By assumption S/K is principally weakly homoflat. Hence K is a left
annihilating right ideal by Lemma 2.8.

2. = 3. Suppose that

zo =t A (Vi € No)(@ipi@: = x5) Ayo = yt A (Vi € No)(yir1vi = ¥i)

for some t,z,y, zo, Yo, T1, Y1, T2, Y2, . .- € S, o # yo. Consider a right ideal

- (=5 u (U ).

For every k € K there exists [ € K such that [k = k, that is K is left
stabilizing. Hence S/K is principally weakly flat by Proposition 1.11. By
assumption K is left annihilating. Since at,yt € K and at # yt, either
x € K or y € K. Thus either x = pz or y = pz for some

p € {zo,21,...} U{yo,y1,...} and z € §.

3. = 1. Let S/K be a principally weakly flat right Rees factor act.
Then K is left stabilizing by Proposition 1.11. We have to show that K
is left annihilating. Suppose that zqg = 2t € K,yo = yt € K for some
z,y € S\ K and t € 5. Suppose that z¢ # yo. Since K is left stabilizing,
there exist 1,41, 2,¥2,... € K such that x;4q2; = 2; and y41y; = y; for
every nonnegative integer i. By assumption there exist p € {zg,21,...} U
{v0,y1,...} and z € S such that either = pz or y = pz. Hence either
x € K or y € K, a contradiction. So we must have the equality zt = yt,
that means K is left annihilating. 1

Example 9 Recall examples 4 and 7. There we had § = K! where K = s*
was a free monogenic monoid. Clearly 5 is a left annihilating right ideal of
S. It was shown in Example 4 that every proper right ideal of .5 has form
s*S for some nonnegative integer k (note that S is commutative). If & > 0
then s*§ is not left stabilizing. If k = 0 then s°$ = K is left annihilating as
shown in Example 4. Thus all principally weakly flat right Rees factor acts
of § are principally weakly homoflat by Proposition 3.6. But in Example 7
we saw that 5 is not almost regular and hence not all torsion free right
Rees factor acts are principally weakly homoflat by Proposition 3.3.
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Corollary 3.7 All torsion free right Rees factor acts of a monoid S are
principally weakly homoflat if and only if S is left almost regular and

(Va,y,t € S)at # yt = (z € Krp(at,yt) Vy € Krp(at,yt))).

Proof. Necessity. If all torsion free right Rees factor acts are princi-
pally weakly homoflat then all torsion free right Rees factor acts are prin-
cipally weakly flat and hence 5 is left almost regular by Proposition 3.3.
Suppose at # yt, x,y,t € S. Let K = Krp(at,yt). Then S/K is torsion
free and by assumption it is principally weakly homoflat. Since xt, yt € K
and K is left annihilating, either z or y is in K.

Sufficiency. Suppose S/ K is a torsion free right Rees factor act. Left
almost regularity of S implies that 5/ K is principally weakly flat by Propo-
sition 3.3 and hence K is left stabilizing by Proposition 1.11. It remains
to show that K is left annihilating and then apply Lemma 2.8. Suppose
that at,yt € K for some 2,y € S\ K. Then Krp(at,yt) C K because
Krp(at,yt) is the smallest right ideal containing xt and yt¢ such that the
Rees factor by it is torsion free. If xt # yt then by assumption either € K
or y € K, a contradiction. Hence a2t = yt. 1

Corollary 3.8 All right Rees factor acts of a monoid S are principally
weakly homoflat if and only if S is regular and

(Va,y,t€ S)(at £yt = (z € xtSUYtS Vy € xtS U yty)).

Proof. Necessity. If all right Rees factor acts are principally weakly
homoflat then all right Rees factor acts are principally weakly flat and hence
we get regularity from Corollary 3.5. Let us show that

Krp(at,yt) = 15 U ytSs.

Inclusion 2tS U ytS C Krp(at,yt) being evident let us show that
Krp(at,yt) C atS U ytS. Take w € Krp(at,yt) = Krp(at) U Krp(yt).
Without loss of generality we may assume that w € Kyp(«t). By definition

of Krp(at) there exist elements z, w', 7y, ..., 7m, S1,. .., Sm—1 € S and right
cancellable elements ¢q,..., ¢, € 9 such that

s$1¢1 = wir

S22 = S1T2

ZCm = Sm_1Tm

and w = zw'. Since § is regular, every right cancellable element of ' is right
invertible. Consequently, multiplying the corresponding equalities by the
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right inverses of right cancellable elements on the right we obtain sy € 29,
sy € atS, ...,z € xtS and so w € xtS. Thus, indeed, Kyp(zt,yt) = 2tS U
ytS. The rest follows now by Corollary 3.7.

Sufficiency follows from corollaries 3.4 and 3.7. 1

Example 10 Consider again a semilattice S = {1l,e, f,0} with ef = 0

from Example 1. This monoid is regular and hence left almost regular. By

Corollary 3.5 all right Rees factor acts of 5 are principally weakly flat and

hence all torsion free right Rees factor acts are principally weakly flat.
Since 1 is the only right cancellable element of 5, we see that

Krr(e) =eS ={e,0} and K7r(0) =05 = {0}. Therefore
KTF(e, 0) = KTF(e) U I(TF(O) = {6, 0}.

Now le # feand 1, f ¢ Krp(le, fe) = Krp(e,0) = {e,0}. This means by
Corollary 3.7 that not all torsion free right Rees factor acts are principally
weakly homoflat and hence not all right Rees factor acts are principally
weakly homoflat.

Now let us consider cyclic acts.

Proposition 3.9 All cyclic right S-acts are principally weakly homoflat if
and only if S is regular and

(Va,y,t € 5)(Fu,v € 9)(ut = vt Aup(xt, yt)x ANvp(at, yt)y).

Proof. Necessity. Regularity follows by Corollary 3.5. Suppose that
z,y,t € 5. By assumption S/p(zt,yt) is principally weakly homoflat and
hence atp(at,yt)yt implies by Lemma 2.7 the existence of u,v € S such
that ut = vt, up(at, yt)x and vp(at, yt)y.

Sufficiency. Suppose that xtpyt for x,y,t € S and a right congruence
p on S. By assumption there exist u,v € S such that ut = vt, up(zt, yt)z
and vp(at, yt)y. Since p(xt,yt) C p, we have upz and vpy. Hence S/p is
principally weakly homoflat by Lemma 2.7. 1

As we saw in Example 10, the class of monoids described by the condition
of Proposition 3.9 is a proper subclass of the class of regular monoids.

For arbitrary right S-acts we can prove the following result.

Proposition 3.10 All torsion free right S-acts are principally weakly ho-
moflat if and only if S is a right cancellative monoid.
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Proof. Necessity. Take an arbitrary element s € 5 and the right ideal
K = Krp(s). If z,y and z denote elements not belonging to 9, define

AMK) = ({z, y) < (S\K)) U ({z) x K),
and define a right S-action on A(K') by

(2, 0)s = (z,us) if us g K
HUS = (z,us) if us € K

| (yyus) ifus g K
(y,u)s = (z,us) if us € K

(z,u)s = (z,us),

We obtain a right S-act. (Note that if X' = § then A(K) is isomorphic
to Sg.) Our first aim is to show that this S-act is torsion free. To this
end, suppose that (a,u)c = (a/,v)c, a,a’ € {z,y,z}, u,v,c € 5, ¢ is right
cancellable. Then uc = vc and cancelling ¢ yields v = v. If « = o’ = @
or a = ¢’ = y then (a,u) = (d’,v). Otherwise (a,u)c = (a’,v)c = (2, uc)
and we € K. That means there exist ¢t € L(s), z € 5 such that ue = tz.

Since t € L(s), there exist elements 7,71, ..., 7, S1,...,8m—1 € 5 and right
cancellable elements ¢q,..., ¢, € 9 such that

$1€1 = S

S22 = S1T2

1Cr, = Sm—1Tm-

These equalities together with we = tz mean that u = v € K. Consequently
a = a' = z and hence again (a,u) = (¢/,v). Thus A(K) is indeed torsion
free.

By assumption A(K') must be principally weakly homoflat. Now the
equality (z,1)s = (y,1)s (= (z,s), because s € K') implies the existence
of u,v,w € 9 and a € {z,y,z} such that us = vs, (2,1) = (a,w)u and
(y,1) = (a,w)v by Proposition 2.6. This implies 2 = a = y, which means
K =5.5ince 1 € K, 1 =1z and

$1€1 = S
$2€2 = 85173
Sm—1Cm—-1 = Sm—2Tm-1
1Cri = Sm—1Tm
for some ¢, 2,71, ...,7m, S1,-..,8m—1 € 5 and right cancellable elements
Cly-y Gy € 5. Since t and ¢, are right cancellable, s,,_; is right can-

cellable. Since s,,_1 and ¢,_1 are right cancellable, s,,_5 is right can-
cellable. Continuing in this manner we get that s is right cancellable.
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Sufficiency. Let S be a right cancellative monoid, As a torsion free
S-act and as = a's, a,a’ € Ag, s € S. Then a = o' by torsion freeness
and we see that Ag is weakly homoflat by taking ¢” = @, v = v = 1 in
Proposition 2.6. 1

Corollary 3.11 The following assertions are equivalent for a monoid S':

1. All torsion free right S-acts are weakly pullback flat.
2. All torsion free right S-acts satisfy condition (P).

3. All torsion free right S-acts are weakly homoflat.

Proof. 1. = 2. = 3. is obvious.

3. = 1. Assume that all torsion free right S-acts are weakly homoflat.
Then 5 is right cancellative by Proposition 3.10. Suppose that Ag is torsion
free and as = d's’, a,a’ € Ag, 5,8 € S. By assumption Ag is weakly
homoflat and hence by Lemma 2.11 (using right cancellativity) there exist
a’ ay,ay € Ag, u,v,p1,pa, q1,q2 € 5 such that either

! " ! "
us=vs,a=auvand a =a’ v,

or
! _ _ d _ 7
4 = azpP2, G = d2¢2 and 28 = pPas,

or
_ ! d _ 7
4 = AP2, G = Az and P2s = (35 .

Thus Ag satisfies condition (P). Suppose as = as’ and sz = s'z, a € Ag,
s,s',z€ 5. Then s = s and hence @ = al and 1s = 1s’. Thus Ag satisfies
condition (E’). By Proposition 2.17 Ag is weakly pullback flat. 1

Unfortunately we do not have the internal description of monoids for which
the assertions of the previous corollary hold. However, we can show that
the corresponding class (which is a subclass of the class of right cancellative
monoids by Proposition 3.10) is strictly bigger than the class of groups.

Example 11 Let S be aright cancellative monoid such that for all s,s" € §
either s € 55’ or s € Ss (for instance a free monogenic monoid). Let
us show that all torsion free right S-acts satisfy condition (P). Suppose
that Ag is a torsion free right S-act and as = a's’, a,d’ € Ag, s,8 € 9.
By assumption there exists v € S such that (without loss of generality)
s = vs'. The equality avs’ = a's’ implies av = a’ by torsion freeness of Ag.
Denoting @” = a we have a = "1, @’ = a"v and 1s = vs’, thus Ag satisfies
condition (P).
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In [30] it was proved that all right S-acts satisfy condition (P) if and only
if 5" is a group. The proposition below is a little stronger.

Proposition 3.12 The following assertions are equivalent for a monoid S.
1. All right S-acts are weakly pullback flat.
2. All right S-acts satisfy condition (P).
3. All right S-acts are weakly homoflat.
4. All right S-acts are principally weakly homoflat.
5. S is a group.

Proof. 1. = 2. = 3. = 4. is clear.

4. = 5. If all right S-acts are principally weakly homoflat then all
right S-acts are principally weakly flat and all torsion free right S-acts are
principally weakly homoflat. Hence by Corollary 3.5 § is regular and by
Proposition 3.10 § is right cancellative. So § must be a group.

5. = 1. Let 5 be a group and Ag a right S-act. We know that Ag
satisfies condition (P). By Proposition 2.17 it is sufficient to show that Ag
satisfies condition (E’). Suppose that as = as’ and sz = s’z for some
a € As,s,s',2 € S. Then multiplying sz = s’z by z=! on the right, we get
s = s' and hence we can take ¢’ = cand u=1. 1

Finally we consider the special case of idempotent monoids. For them the
condition of Corollary 3.8 takes a simpler form.

Proposition 3.13 Let S be an idempotent monoid. Then all right Rees
factor acts of S are principally weakly homoflat if and only if

(Ve,f € S)ef=fVe=efe).

Proof. Necessity. Takee, f € S. If e =1 or f = 1 then we obviously
have what we need. Assume that e # 1, f # 1 and ef # f. By Corollary
3.8 either ¢ € efS U fS or 1 € efS U fS5. Since ef and f are not right
invertible, necessarily e € e fSU f5. Suppose e = efz for some z € 5. Then

e = efz = (ef)ef)z = (ef)ef2) = efe.
If e = fz for some z € 5 then

e = ce = (f2)(f2) = (f2)[(f2) = efe.

Sufficiency. We use Corollary 3.8 to show that all Rees factors of
are principally weakly homoflat. Suppose that zt # yt, z,y,t € S. It is
impossible that xt = ¢t and yt = t. Hence either z = xtx or y = yty and
thus either x € ztS U ytS or y € 215 U ytS. 1
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3.3 Weak homoflatness

Here we characterize monoids over which all (all torsion free, all princi-
pally weakly flat, all principally weakly homoflat) right Rees factor acts
are weakly homoflat. As a special case we find a description of the idem-
potent monoids over which all (all principally weakly homoflat) right Rees
factor acts are weakly homoflat, and over which all cyclic right S-acts are
weakly homoflat.

We start again with Rees factor acts.

Proposition 3.14 All principally weakly homoflat right Rees factor acts
of S are weakly homoflat if and only if S is right reversible and every left
stabilizing and left annihilating right ideal of S is strongly left annihilating.

Proof. Necessity. If all principally weakly homoflat right Rees factor
acts are weakly homoflat then the one-element right S-act g is also weakly
homoflat and hence weakly flat. By Corollary 1.12 S is right reversible.
Suppose that K is a left stabilizing and left annihilating right ideal of 5.
Then S/K is principally weakly homoflat by Lemma 2.8. By assumption
S/ K is weakly homoflat. Hence K is strongly left annihilating by Lemma
2.13.

Sufficiency. Suppose S/ K is principally weakly homoflat. Then K is
left stabilizing and left annihilating by Lemma 2.8. Using assumption and
Lemma 2.13 we see that 5/ K is weakly homoflat. &

Corollary 3.15 If S is a commutative monoid then all principally weakly
homoflat right Rees factor acts of S are weakly homoflat.

Proof. Let K be a left stabilizing and left annihilating right ideal of §
and f:g(SsUSt) — g5 a homomorphism of left S-acts with s,t € 5\ K
and f(s), f(t) € K (note that s,¢ ¢ K implies 1 ¢ K). Then using left
annihilation and commutativity we obtain

f(s) =1f(s) = f(ts) = f(st) = sf(t) = f(1).

Thus K is strongly left annihilating and S/ K is weakly homoflat by Lemma
2.13, because a commutative monoid is right reversible. 1

Example 12 Consider a semilattice S = {1,e, f,0} with ef = 0 (as in
examples 1 and 10). Since S is commutative, all principally weakly homoflat
right Rees factor acts of 5" are weakly homoflat by Corollary 3.15. But not
all principally weakly flat right Rees factor acts are weakly homoflat by
Proposition 3.6, because 5 = {e,0} is a left stabilizing right ideal which
is not left annihilating.
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Corollary 3.16 The following assertions are equivalent for a monoid S':

1. All principally weakly flat right Rees factor acts of S are weakly ho-
moflat.

2. 5 is right reversible and every left stabilizing right ideal of S is strongly
left annihilating.

3.5 s right reversible and for all x,y € S, for all homomorphisms
fis(SzUSy) — g5 such that zog = f(z) # f(y) = yo, and for all
X1, Y1, %2, Y2, ... € 5 such that

(Vi € No)(@i12; = ;) and (Vi € No)(yi1¥i = ¥i),

there exist p € {xg,x1,...} U{¥o,¥1,...} and z € § such that either
T =pzory=p:z.

Proof.  Equivalence of 1 and 2 follows from Propositions 3.6 and 3.14.
2. = 3. Suppose that

zo = f(z) A (Vi€ No)(@iy17 = @) Ayo = f(y) A (Vi € No)(yirry: = 4i)

for some z,y € S, a homomorphism f : ¢(Sz U Sy) — 595 such that
f(z) # f(y), and elements z1,y1,22,y2,... € 5. Consider a right ideal

For every k € K there exists [ € K such that [k = k, that is K is left stabi-
lizing. By assumption K is strongly left annihilating. Since f(z), f(y) € K
and f(z) # f(y), either € K or y € K. Thus either z = pz or y = pz for
some p € {zg,21,...} U{yo,v1,...} and z € S.

3. = 1. Let S/K be principally weakly flat. Then K is left stabilizing
by Proposition 1.11. We have to show that K is strongly left annihilating.
Suppose that zg = f(z) € K,yo = f(y) € K for some z,y € §\ K and
a homomorphism f : g(Sz U Sy) — 5. Suppose that zg # yo. Since K
is left stabilizing, there exist 1, v1,22,¥2,... € K such that x;412; = z;
and y;11y; = y; for every nonnegative integer 7. By assumption there exist
p € {zo,21,...} U{yo,¥1,...} and z € § such that either = pz or y = pz.
Hence either z € K or y € K, a contradiction. So we must have the equality
f(z) = f(y), that means K is strongly left annihilating. 1§

Example 13 Consider again the monoid S = {1,s,¢,2,y,0} from Exam-
ple 2. We saw that K = {0,z,y} is a left stabilizing right ideal which is
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not strongly left annihilating. Hence not all principally weakly flat right
Rees factor acts are weakly homoflat by Corollary 3.16.

Let us show that still all principally weakly flat right Rees factor acts
are principally weakly homoflat. Right ideals of S are S, {0},
s§S =15 ={s,t,z,y,0}, 25 = {2,0}, ys = {y,0} and {z,y,0}. Clearly, the
first three right ideals are left annihilating and it was shown in Example 2
that {x,y,0} is left annihilating. Suppose that uz,vz € {z,0}, z € 9,
u,v € S\ {z,0}. Then either uz = vz = x, or z = 0. In the second case we
obtain uz = vz = 0. Hence {2,0}, and similarly {y,0}, is left annihilating,
too. Thus all right ideals of 5 are left annihilating and so all principally
weakly flat right Rees factor acts of 5" are principally weakly homoflat by
Proposition 3.6.

The proofs of the following two corollaries are similar to the proofs of
Corollaries 3.7 and 3.8.

Corollary 3.17 All torsion free right Rees factor acts of a monoid S are
weakly homoflat if and only if S is left almost reqular and for all z,y € S
and all homomorphisms f: g(Sz U Sy) — 55

f(2) # fly) = (v € Krp(f(2), f(y)Vy € Krr(f(2), f(y)))-

Corollary 3.18 All right Rees factor acts of a monoid § are weakly ho-
moflat if and only if S is reqular, right reversible and for all x,y € § and
all homomorphisms f: ¢(Sx U Sy) — g5

f2) # f(y) = (z € f(2)SU f(y)SVy € f(x)SU f(y)S).
Our next aim is to find out when all cyclic right acts are weakly homoflat.

Proposition 3.19 All cyclic right S-acts are weakly homoflat if and only
if S is regular and

(Va,y,t € 5)(Fu,v € 9)(ut = vt Aup(xt, yt)x A vp(at, yt)y)

and for all s,t € S and all homomorphisms f: ¢(SsU St) — g5 there exist
u,v,z,w € S such that

(uf(s) = vf(t) N usts AviTt)V

(uf(s)=vf(s) ANurl A ztv A zs = wiTt)V

(uf(t) =vf(t) NoTl Awru A zs = wits)
where T = p(f(s), f(1)).

61



Proof. Necessity. Proposition 3.9 implies that 5 is regular and the
first condition holds. Take s,t € § and a homomorphism

f:s(8sU St) — 5. By assumption S/p(f(s), f(t)) is weakly homoflat and
hence by Lemma 2.12 there exist w,v,p1,p2,q1,92 € S such that either
flus) = f(vt) and

(1] =[]
[¢,] = [u]  p1s = qs
(1] = [pa]
[a2] = [v]  pat = gat,
or f(us) = f(vs) and
(1] = [p]
(1] = [p2] pit = at
[2] = [v]  pat = s
(1] = [u],
or f(ut) = f(vt) and
(1] = [p]
(1] = [p2] p1s = as
[g2] = [u] p2s = gat
(1] = [v]-

In the first case usp(f(s), f(t))s and vip(f(s), f(t))t, in the second case

025 = potp(f(s), F(£))1 and in the third case pas = qatp(f(s), F(1))s.
Sufficiency. Let p be a right congruence on a monoid S and let

f(s)pf(t) for s,t € S and a homomorphism f : g(SsUSt) — s5. By
assumption there exist u, v, z,w € 5 such that

(uf(s) = vf(t) N usts AviTt)V

(uf(s)=vf(s) ANurl A ztv A zs = wiTt)V

(uf(t) =vf(t) NoTl Awru A zs = wits)
where 7 = p(f(s), £(1)) C p.

In the first case for u, 1, s there exist ¢;,p; € 5 such that ¢15 = pys,
qp(us, s)u and pip(us,s)l. Now usts implies p(us,s) C 7 C p, thus q1pu
and p1pl. Analogously using vttt we get g9, p2 € 5 such that gopv, popl
and pot = gat.

In the second case using witt we get ¢1,p1 € 5 such that ¢ pw, pipl
and pit = qqt.

In the third case zs7s implies the existence of ¢1,p1 € 5 such that ¢, pz,
p1pl and prs = qs.

Thus S/p is weakly homoflat by Lemma 2.12. &
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Finally, we consider the case of idempotent monoids.

Proposition 3.20 Let S be an idempotent monoid. All principally weakly
homoflat right Rees factor acts of § are weakly homoflat if and only if
S is left collapsible and every left annihilating right ideal is strongly left
annihilating.

Proof. Necessity. By Proposition 3.14 5 is right reversible. It is easy
to see that an idempotent monoid is right reversible if and only if it is left
collapsible. Suppose that K is a left annihilating right ideal. Since 5 is an
idempotent monoid, K is left stabilizing. Again by Proposition 3.14 K is
strongly left annihilating.

Sufficiency. Let S/ K be principally weakly homoflat. Then K is left
annihilating by Lemma 2.8. By assumption K is strongly left annihilating.
Hence S/ K is weakly homoflat by Lemma 2.13. |

Corollary 3.21 Let S be an idempotent monoid. All right Rees factor acts
of S are weakly homoflat if and only if S is left collapsible and

(Va,y € S)(Vs,t € S\ (25U y9))
(x#£ynsz=aANty=y= (Fu,v e ) (us= vt ANuzx # vy)).

Proof. Necessity. Left collapsibility follows from Proposition 3.20.
Suppose that

(Jz,y € §)(3s,t € S\ (2S5 UyS))
(x#£ynsz=aNty=yA(Yu,v € S)(us# vtV uzr=vy)).

Denote K = x5 U yS5. By assumption S/K is weakly homoflat and hence
K is strongly left annihilating. Define a mapping f: s(SsU St) — ¢S by

flus) = uz,
flut) = uy,

w € 5. If us = vs, u,v € 5 then sx = z implies uz = vz. Analogously
ut = vt, u,v € 5 implies uy = vy. If us = vt, u,v € S then ux = vy. Thus
[ is well defined and clearly it is a homomorphism of left S-acts. Now
s,t € S\ K, f(s),f(t) € K, but f(s) # f(t). So K is not strongly left
annihilating, a contradiction.

Sufficiency. Let K be a right ideal of 5. Since § is idempotent, K
is left stabilizing. Suppose that f(s), f(¢) € K for some s,t € S\ K and a
homomorphism f: g(SsU St) — 5. Denote 2 = f(s) and y = f(¢). Then
s,t € S\(2SUyS), sz = x and ty = y. Suppose & # y. Then by assumption
there exist u,v € S such that us = vt, but uz # vy, that is, f(us) # f(vt),
a contradiction. Consequently z = y, or f(s) = f(t). This means that K is
strongly left annihilating. By Lemma 2.13 S/ K is weakly homoflat. 1
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Recall that the monoid 5 in Example 12 was an idempotent monoid. Thus,
Corollary 3.21 describes a strictly smaller class of monoids than Proposi-
tion 3.20.

It also can be seen that Corollary 3.21 describes a strictly smaller class
of monoids than Proposition 3.13. Indeed, if T is a right zero semigroup
with two or more elements and S = T, then for all e, f € S either ef = f
(in the case f # 1) or e = efe (in the case f = 1). On the other hand, the
condition of Corollary 3.21 is not satisfied, because § is not a left collapsible
monoid.

Now let us consider cyclic acts of idempotent monoids. First let us recall
some facts about idempotent monoids.

An idempotent semigroup is also called a band. A band S5 is called
rectangular,if e fe = e for all e, f € 5. Every rectangular band is isomorphic
to a cartesian product I x A, with multiplication given by

(4, M) 1) = (i, ),

i,7 €1, A\, ;n € A. Every band 5 is a semilattice of rectangular bands (see,
e.g. [10]), that is
S=19

~el

where each 5, C S is a rectangular band, v # 6 implies S, N S5 = O, I is
a lower semilattice and

S’ysﬁ - S’yé

for all 4,6 € I' (we use the notation of multiplication for the operation
of this semilattice). Since an idempotent monoid is a band, it is also a
semilattice of rectangular bands.

For a special case of rectangular bands with identity adjoined we have
the following result.

Lemma 3.22 Let S be a rectangular band with identity adjoined. If all
principally weakly homoflat cyclic right S-acts are weakly homoflat then S
s a left zero semigroup with identity adjoined.

Proof. Let S = (I x A)! and let all principally weakly homoflat cyclic
right S-acts be weakly homoflat. Suppose that |[A| > 2. Choose A\, u € A
such that A # p and an arbitrary element ¢ € I. Denote s = (i,A) and
t = (¢, ). Let us show that

p(s,t) = {(s,1),(t,s)yU{(2,2) | z € 57.
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The converse being obvious let us show that p(s,t) is contained in the set
which is on the right-hand side of the last equality. For this, suppose that
(z,y) € p(s,t), z,y € 5. By Lemma 1.15 either 2 = y or there exist a

natural number n and elements %1,...,¥%n, S1,+-.sSn, 1,...,1, € 5 such
that
T = s1h laY2 = 53Y3
Liyr = S2Y2 oty = Y,

where {s;,t;} = {s,t} for every i € {1,...,n}. Let this sequence of equal-
ities be the shortest. If none of the elements ¥,...,¥, is equal to 1 then
using the multiplication rule in I X A we obtain

T=s1 =t = ... =y, = Y.

Otherwise let j be the smallest index such that y; = 1. If 7 > 2 then
r =t;_1yj—1 = 5;y; = s; and the sequence can be shortened. If j = 1 then
x = s1y1 = 1 and 11 = t1y1 = Soy9. If yo = 1 then ¢4 = so and s; = 19,
hence z = 51 = t3 = tayz. If yo # 1 then t; = soy2 = tys = s3ys. So
whenever n > 2, the sequence can be shortened. Consequently n = 1, that
is = 51 and y = #1. Therefore either (z,y) = (s,t) or (z,y) = (¢, s).

Now let us show that 5/p(s,t) is principally weakly homoflat. Suppose
that zpp(s,t)yp for some z,y,p € S. If p = 1 then zp = ap, zp(s, 1)z
and zp(s,t)y, hence S/p is principally weakly homoflat by Lemma 2.7. If
p # 1 then (zp,yp) # (s,1) and (zp, yp) # (t,s), hence ap = yp and, again,
S/p is principally weakly homoflat by Lemma 2.7. By assumption S/p is
weakly homoflat and hence there exist u,v € 5 such that us = vt, but this
contradicts the choice of s and ¢. Thus |A| = 1 which means that I x A is
a left zero band. 1

It will turn out soon (see Corollary 3.24) that all cyclic right S-acts over a
left zero band with identity adjoined are weakly homoflat.

If $ = U,er 95 is a chain I' of semigroups S, then it is called a left
annihilating chain if

(Vy,6 € I')(Vs € 5,)(Vt € Ss)(y > 6 = st =1t).

Similarly right annihilating chains of semigroups are defined. An annihi-
lating chain is left and right annihilating chain.

A band 5 is called left regular if efe = ef for all e, f € 5. For a
characterization of idempotent monoids over which all cyclic right acts are
weakly homoflat we need the following theorem.

Theorem 3.23 ([5]) Let S be an idempotent monoid. All cyclic right
S-acts are weakly flat if and only if S is a left regular band.
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Corollary 3.24 The following assertions are equivalent for an idempotent
monoid S':

1. All cyclic right S-acts are weakly homoflat.
2.

(Ve,f € S)(ef=fVe=efe)ANefe=ef).
3. 5 is an annihilating chain of left zero bands.

Proof. 1. = 2. This follows immediately from Proposition 3.13 and
Theorem 3.23, because weak homoflatness implies weak flatness.

2. = 3. Let § = U, 5 be a representation of 5 as a semilattice I' of
rectangular bands S.,. Take any 7,6 € I'and e € 5, f € Ss. By assumption
either ef = f or e = efe. In the first case v > 6 and in the second case
v < 6. Thus I' is a chain. Let e € 5, f € S5, 7,6 €', v > 6. Then e = efe
is impossible, thus ef = f and 5 is a left annihilating chain. Using left
regularity we get f = ef = efe. Therefore f = fe, that is 5 is a right
annihilating chain, too. Hence 5 is an annihilating chain of rectangular
bands. Further, takee, f € 5,, v €. If ef = f, then using rectangularity
of S, and left regularity of S we obtain

e=efe=ef = f.

Otherwise,
e=¢efe=ef.

Thus, 5,, v € I' is a left zero band and 5 is an annihilating chain of left
zero bands.

3. = 1. Let 5§ = U,er 9y be an annihilating chain I' of left zero
bands 5, and p a right congruence on 5. We use Lemma 2.12 to check that
S/p is weakly homoflat. Suppose that f(s)pf(t) for some s,z € 5 and a
homomorphism f : g(5sU St) — g5. Let s € S4,, t € Sa,, f(s) € S5,,
f(t) € Sg,. Then aq > By, because sf(s) = f(s), and, analogously, ag > .
Since I' is a chain, without loss of generality we may assume that oy > a,.
This means that ¢t = ts. If @y = 31 then

and, since 51 = a1 > as,

66



Thus tf(s) = tf(t) and

(1] = [1]
[s] = [t] 1s = ss
(1] = [1]
1] = [t] 1t = t.

Now suppose that a; > 31 and consider the following cases.
a) 1 > az. Then, as before, f(t) = f(ts) = tf(s) = t. Consequently
1(s) = f()f(s) and

1] = [
(1] = [1] 1t = tt
1] = [F(s)) tt = ts
1] = [1.

b) ag > 1. Then f(s) = tf(s) = f(ts) = f(t). Hence 1f(s) = 1f(¢)

and
] =[]
] = [1] 1s = 1s
] =[]

1] 1t = 1t
This means that S/p is weakly homoflat. &

For arbitrary right acts over an idempotent monoid we have the following
result.

Proposition 3.25 The following assertions are equivalent for an idempo-
tent monoid S':

1. All right S-acts are weakly homoflat.
2. All right S-acts are principally weakly homoflat.

3. 8§ ={1}.

Proof. 1. = 2. is obvious.

2. = 3. By Corollary 3.12 5 is a group. The only idempotent group is
the trivial group 5 = {1}.

3. = 1. If § = {1} then all right S-acts are even free. 1
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3.4 Condition (P)

Here we give a characterization of monoids over which all right Rees factor
acts with some weaker property than condition (P) have condition (P).

Proposition 3.26 All weakly homoflat right Rees factor acts of S satisfy
condition (P) if and only if S is not right reversible or no nontrivial right
wdeal of S is left stabilizing and strongly left annihilating.

Proof. Necessity. Suppose that S is right reversible and K is a non-
trivial left stabilizing and strongly left annihilating right ideal. Then S/ K
is weakly homoflat by Lemma 2.13. By assumption S/ K must satisfy con-
dition (P), but this means that K is trivial by Proposition 1.11, a contra-
diction.

Sufficiency. Let 5/K be weakly homoflat. Then S is right reversible
by Lemma 2.13. If K = 5, that is S/K = Og, then 5/ K satisfies condition
(P) by Lemma 2.14. If |K| = 1 then S/K ~ S is free and hence satisfies
condition (P). Suppose that K is a nontrivial right ideal. By assumption
K is either not left stabilizing or not strongly left annihilating. Thus S/K
is not weakly homoflat by Lemma 2.13, a contradiction. 1

Corollary 3.27 All principally weakly homoflat right Rees factor acts of
S satisfy condition (P) if and only if S is right reversible and no nontrivial
right ideal of S is left stabilizing and left annihilating.

Proof. Necessity. By Proposition 3.14 § is right reversible. Suppose
K is a nontrivial left stabilizing and left annihilating ideal of 5. Then S/K
is principally weakly homoflat by Lemma 2.8. By assumption S/ K satisfies
condition (P), so K must be trivial, a contradiction.

Sufficiency. Let S/ K be principally weakly homoflat. Then K is left
stabilizing and left annihilating. By assumption K must be trivial. Hence
S/ K satisfies condition (P) by Proposition 1.11. 1

The following is a corollary of Corollary 3.27 and Proposition 3.6.

Corollary 3.28 ([20]) All principally weakly flat right Rees factor acts of
S satisfy condition (P) if and only if S is right reversible and no nontrivial
right ideal is left stabilizing.

Corollary 3.29 All torsion free right S-acts satisfy condition (P) if and
only if S is right cancellative monoid with a zero adjoined, or right can-
cellative and right reversible.
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Proof. Necessity. By Corollary 3.28 S is right reversible. Take s € 5.
Then the right Rees factor act S/Krr(s) is torsion free. By assumption
S/Kr1r(s) satisfies condition (P). By Proposition 1.11 |K7p(s)] = 1 or
K7r(s) = 5 is right reversible. In the first case s is a left zero, because
s8 C Kgp(s). In the second case 1 € Kgp(s) implies that s is right
cancellable as in the proof of Proposition 3.10. So every element of 5 is
either a left zero or right cancellable. Let K be the set of all left zeros of
S. If K is nonempty then it is a left stabilizing right ideal and by Corollary
3.28 it must be trivial. Thus S has at most one left zero which must then
be a zero. Since the product of two right cancellable elements is right
cancellable, we have § = C'¥ in the case if S has a zero 0.

Sufficiency. Let S be a right cancellative monoid with a zero adjoined,
or right cancellative and right reversible monoid. Suppose that S/K is
torsion free for a right ideal K of S. If |K| = 1 then S/K is even free.
Otherwise K contains a right cancellable element ¢. Hence 1¢ € K implies
by torsion freeness of S/K that 1 € K, that is K = 5. Thus S/ K satisfies
again condition (P). &

Since a regular right cancellable element of a monoid must be right invert-
ible, Corollaries 3.18 and 3.29 imply the following result.

Corollary 3.30 ([20]) All right Rees factor acts of S satisfy condition (P)
of and only if S' is a group or a group with a zero adjoined.

Now let us consider cyclic acts.
For given s, € § let us define a sequence of subsets of 5 x §

Fy = {(2,y)] (3c € 5)(c is right cancellable and (z¢, yc) € p(s,1))},
Fiyr = {(z,y) | (3c € §)(c is right cancellable and (zc,yc) € p(£3))}

and a binary relation on 5
prr(s,t) = | p(F).
=1

Clearly, p is a right congruence on 5.

Lemma 3.31 All cyclic torsion free right S-acts satisfy condition (P) if
and only if

(Vs,t € §)(Fu,v e 5)(us = vt ANuprr(s,t)L ANvprr(s,t)l).
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Proof. Necessity Suppose (zc,yc) € prr(s,t) for z,y,¢ € S where
¢ is right cancellable. Then there exists a natural number &k such that
(ze,yc) € p(Fy). By the definition of Fjyq we have (z,y) € Fyy1 and hence
(z,y) € p(Fr+1) C prr(s,t). This means that S/prr(s,t) is torsion free.
The rest follows now from Proposition 1.10, because S/prp(s,t) has to
satisfy condition (P) and (s,t) € prr(s,t).

Sufficiency. Let p be a right congruence on S and spt, s, € 5. Then
p(s,t) C p. If (zc,yc) € p(s,t) C p, x,y,c € 9, ¢ is right cancellable, then
using torsion freeness of 5/p we obtain (z,y) € p. Hence Fy C p and thus
p(F1) C p because p(F) is the smallest right congruence containing Fj.
Assume that p(F;) C p. Suppose that (zc,yc) € p(F;) C p, z,y,c € 5, cis
right cancellable. Then using torsion freeness of S/p we obtain (z,y) € p.
Hence Fi41 C p and thus p(F;41) C p. So we have shown that prp(s,t) C p.
By assumption there exist u,v € S such that us = vt, upyp(s,t)l and
vprr(s,t)l. But then us = vt, upl and vpl, which means that 5/p satisfies
condition (P). &

3.5 Weak pullback flatness

Here we try to answer the questions “When are all right Rees factor acts
with property X weakly pullback flat?”.

Proposition 3.32 All right Rees factor acts of S satisfying condition (P)
are weakly pullback flat if and only if S' is not right reversible or S is weakly
left collapsible.

Proof. Necessity. Suppose that S is right reversible. Then the one-
element right S-act ©g satisfies condition (P). By assumption ©g is weakly
pullback flat and hence 5 is weakly left collapsible by Corollary 2.20.

Sufficiency. Let S/K satisfy condition (P). By Proposition 1.11
either || = 1 or K = S is right reversible. In the first case S/K is free
and hence weakly pullback flat. In the second case we know that 5 is
weakly left collapsible by assumption. Hence S/K is weakly pullback flat
by Lemma 2.19. J

Using Propositions 3.26 and 3.32 we get the following.

Corollary 3.33 All weakly homoflat right Rees factor acts of S are weakly
pullback flat if and only if S is not right reversible or S is weakly left
collapsible and no nontrivial right ideal is left stabilizing and strongly left
annihilating.

The next result comes from Corollaries 3.27 and 3.33.
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Corollary 3.34 All principally weakly homoflat right Rees factor acts of
S are weakly pullback flat if and only if S is right reversible and weakly
left collapsible and no nontrivial right ideal of S is left stabilizing and left
annihilating.

Corollaries 3.28 and 3.34 yield the following corrollary.

Corollary 3.35 All principally weakly flat right Rees factor acts of S are
weakly pullback flat if and only if S is right reversible and weakly left col-
lapsible and no nontrivial right ideal of S is left stabilizing.

Corollary 3.36 All torsion free right Rees factor acts of S are weakly
pullback flat if and only if S is a right cancellative monoid with a zero
adjoined, or S is right cancellative and right reversible.

Proof. Necessity follows from Corollary 3.29.

Sufficiency. By Corollary 3.29 all torsion free right Rees factor acts
satisfy condition (P). By Proposition 3.32 it is sufficient to show that 9
is weakly left collapsible. Suppose that sz = s’z for some s,¢',2 € S.
If S contains zero then 0s = 0s’ and we are done. Otherwise 5 is right
cancellative and hence sz = s’z implies s = s’ and we have 1s = 1s’. Thus
S is weakly left collapsible. 1

Corollary 3.37 All right Rees factor acts of S are weakly pullback flat if
and only if S is a group or a group with a zero adjoined.

Proof. Necessity follows from Corollary 3.30.

Sufficiency. By Corollary 3.30 all right Rees factor acts satisfy Condi-
tion (P). The rest follows from Proposition 3.32 because groups and groups
with a zero adjoined are weakly left collapsible. |

To get the following corollary for cyclic acts we need a proposition.

Proposition 3.38 ([21]) All cyclic right S-acts satisfying condition (P)
are weakly pullback flat if and only if every right reversible submonoid of S
1s weakly left collapsible.

Corollary 3.39 All cyclic right S-acts are weakly pullback flat if and only
if S is a group or S = {0,1}.

Proof. Necessity. By Corollary 3.37 S is a group or a group with a

zero adjoined. Suppose that S = GY where ¢ is a nontrivial group. Then
G is a right reversible submonoid of $ which is not weakly left collapsible.
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Hence all cyclic right S acts cannot be weakly pullback flat by Proposition
3.38.

Sufficiency. If S is a group then all S-acts are weakly pullback flat by
Proposition 3.12. If 5 = {0, 1} then all cyclic acts are pullback flat (and
hence weakly pullback flat) by Theorem 3.1 of [23]. &

3.6 Pullback flatness

Here we try to answer the questions “When are all right Rees factor acts
with property X pullback flat?”. We also study cyclic acts over idempotent
monoids.

Proposition 3.40 All weakly pullback flat right Rees factor acts of S are
pullback flat if and only if S is not a right reversible weakly left collapsible
monoid or S is left collapsibile.

Proof. Necessity. Suppose that 5 is a right reversible and weakly
left collapsible monoid. Then by Corollary 2.20 the one-element right S-act
Os is weakly pullback flat. By assumption Og is pullback flat and hence S
is left collapsible by Corollary 1.12.

Sufficiency. Let S/K be a weakly pullback flat right Rees factor act.
By Lemma 2.19 either |K| = 1 or K = S is right reversible and weakly
left collapsible. In the first case S/ K is free and hence pullback flat. In
the second case S is left collapsible by assumption. Hence S/K = Og is
pullback flat by Corollary 1.12. 1

The following six results are direct consequences of Proposition 3.40, Propo-
sition 3.32 and Corollaries 3.33, 3.34, 3.35, 3.36 and 3.37.

Corollary 3.41 ([20]) All right Rees factor acts of S satisfying condition
(P) are pullback flat if and only if S is not right reversible or S is left
collapsible.

Corollary 3.42 All weakly homoflat right Rees factor acts of S are pull-
back flat if and only if S is not right reversible or S is left collapsible and no
nontrivial right ideal of S is left stabilizing and strongly left annihilating.

Corollary 3.43 All principally weakly homoflat right Rees factor acts of
S are pullback flat if and only if S is left collapsible and no nontrivial right
wdeal of S is left stabilizing and left annihilating.

Corollary 3.44 ([20]) All principally weakly flat right Rees factor acts of
S are pullback flat if and only if S is left collapsible and no nontrivial right
wdeal of S is left stabilizing.
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Corollary 3.45 All torsion free right Rees factor acts of S are pullback
flat if and only if S' is a right cancellative monoid with a zero adjoined, or
S is right cancellative and left collapsible.

Corollary 3.46 ([20]) All right Rees factor acts of S are pullback flat if
and only if S is a group with a zero adjoined or S = {1}.

Let us consider again a special case of idempotent monoids. Observe that
if §'is an idempotent monoid then by Proposition 2.13 of [1] a right S-act
is pullback flat if and only if it satisfies condition (P).

Lemma 3.47 Let S be an idempotent monoid. If all weakly homoflat cyclic
right S-acts are pullback flat then S is a semilattice of right zero bands.

Proof.  Let S = J,er 95 be a semilattice I' of rectangular bands 5., and
let all weakly homoflat cyclic right S-acts be pullback flat. Suppose that
Sy=IxAvyel, 1¢S5, and |[I| > 2. Choose i,j € I,i# jand A € A.
Denote s = (i, A), t = (j,A) and p = p(s,t). Then st = s and ts = .

First, let us show that S/p is weakly homoflat. Suppose that f(s)pf(¢)
for s,t € S and a homomorphism f : ¢(SsUSt) — 5. By Lemma 1.15
either f(s) = f(t) or there exist a natural number n and elements y1, ..., ¥y,
815y Spy b1ye..yty €5 such that

f(s) = s1mn loya = S3Y3
tlyl = 821> tnyn = f(t),

where {s;,t;} = {s,t} for every i € {1,...,n}. Multiplying all these equal-
ities by s on the left and using the equality st = s we obtain

sf(s) = ss1yr = sy1 = Stiyh = SSaY2 = Sy

= stays = ... = stpy, = sf(t).
Moreover,
(1] = [1]
[s] = [s] 1s = ss
(1] = [1]
[t] = [s] 1t = tt,

i.e. S/p is weakly homoflat.

By assumption S5/p is pullback flat. Therefore by Proposition 1.10 spt
implies the existence of u € 5 such that upl and us = ut. Since s,¢ being
nonidentity idempotents are not right invertible, [1], = {1}. Consequently
w =1 and s = ¢, a contradiction. Thus |[/| = 1, that is, S, is a right zero

band. 1
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Lemma 3.48 If 5 is a right zero band with an identity adjoined then all
weakly homoflat cyclic right S-acts are pullback flat.

Proof. Let S = T! where T is a right zero band and let p be a right
congruence on 5 such that S/p is weakly homoflat and suppose that spt,
s,t € 5. If s =1 then ts = ¢t and tpl. Analogous argument applies if ¢ = 1.
If s,t € T then using weak homoflatness of S/p (taking f the inclusion
of g(SsU St) into g.9) we get the elements u, v, p1,p2,q1,q2 € S such that
either us = vt and

[ [p1
;] = [u]l pis = qs
[1] = [p2]
[q2] [v]  pat = got,
or us = vs and
[1] = [pi]
[1] = [p2] mt = qit
(2] = [v]  pat = @s
[1] = [u],
or ut = vt and
[1] = [p]
[fh] = [P2] ns = q1s
(2] = [u] p2s = qat
[1] = [v]

Since T is a right zero band, we have s = ¢ in any case. Thus 1s = 1¢ and
1p1 yield that S/p is pullback flat. 1

3.7 Projectivity

Here we try to answer the questions “When are all right Rees factor acts
with property X projective?”.

Proposition 3.49 ([20]) All pullback flat right Rees factor acts of S are
projective if and only if left S is not left collapsible or S has a left zero.

The following seven results are direct consequences of Proposition 3.49,
Proposition 3.40 and corollaries 3.41, 3.42, 3.43, 3.44, 3.45 and 3.46.

Corollary 3.50 All weakly pullback flat right Rees factor acts of S are
projective if and only if S is not a right reversible weakly left collapsible
monoid or S has a left zero.

Corollary 3.51 ([20]) All right Rees factor acts of S satisfying condition
(P) are projective if and only if S is not right reversible or S has a left zero.
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Corollary 3.52 All weakly homoflat right Rees factor acts of S are pro-
jective if and only if S is not right reversible or S has a left zero and no
nontrivial right ideal of S is left stabilizing and strongly left annihilating.

Corollary 3.53 All principally weakly homoflat right Rees factor acts of
S are projective if and only if S has a left zero and no nontrivial right ideal
of S is left stabilizing and left annihilating.

Corollary 3.54 ([20]) All principally weakly flat right Rees factor acts of
S are projective if and only if S has a zero and no nontrivial right ideal of
S is left stabilizing.

Note that the existence of a zero follows from the fact that the subset
consisting of all left zeros of 5 is a left stabilizing right ideal.

Corollary 3.55 All torsion free right Rees factor acts of S are projective if
and only if S is a right cancellative monoid with a zero adjoined or S = {1}.

Corollary 3.56 ([20]) All right Rees factor acts of S are projective if and
only if S is a group with a zero adjoined or S = {1}.

The following results concern idempotent monoids.

Proposition 3.57 The following assertions are equivalent for an idempo-
tent monoid S':

1. All weakly homoflat right Rees factor acts of S are projective.
2. All weakly homoflat right Rees factor acts of S are pullback flat.

3. 5 is not left collapsible or S = {1} or § ={0,1}.

Proof. 1. = 2. is obvious.

2. = 3. Let S be left collapsible. Denote K = S\ {1}. If K = 0
then S = {1}. Otherwise K is a left stabilizing strongly left annihilating
right ideal. Hence the right Rees factor act S/K is weakly homoflat. By
assumption S/K is pullback flat. Consequently |K| = 1 by Proposition
1.11. Thus S ={0,1}.

3. = 1. Let §/K be weakly homoflat. Then $ is left collapsible and
hence by assumption S = {1} or § = {0,1}. By Corollary 3.56 S/K is
projective. 1
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For the next corollary we need the notion of right perfect monoids. A
monoid is called right perfect [11] if every right S-act has a projective cover.
It was proved in [7] that a monoid is right perfect if and only if all pullback
flat right acts over it are projective. It was shown in [18] that a monoid 5
is right perfect if and only if S satisfies the conditions (A) and (K) below:

(A) every right S-act satisfies the ascending chain condition for cyclic
subacts;

(K)if P C S is aleft collapsible submonoid then P contains a left zero.

Recall that if § is an idempotent monoid then every right S-act satis-
fying condition (P) is pullback flat.

Corollary 3.58 The following assertions are equivalent for an idempotent
monoid S':

1. All principally weakly homoflat right S-acts are projective.
All principally weakly homoflat right S-acts are pullback flat.
All principally weakly homoflat cyclic right S-acts are projective.

All principally weakly homoflat cyclic right S-acts are pullback flat.

AR

All principally weakly homoflat right Rees factor acts of S are projec-
tive.

6. All principally weakly homoflat right Rees factor acts of S are pullback
fat.

7.5 ={1} or S ={0,1}.

Proof.  Implications 1. = 3. = 5.,2. = 4. = 6., 1. = 2.,3. = 4. and
5. = 6. are obvious.

6. = 7. By Proposition 3.20 5 is left collapsible. Hence by Proposition
3575 ={1}or 5 =40,1}.

7. = 1. For § = {1} all right acts are projective. Consider S = {0,1}.
Let Ag be a principally weakly homoflat right S-act. We shall show that
Ag satisfies condition (P) (and hence is pullback flat). Suppose as = a’s’,
a,a’ € Ag, s,s € S. If s = s then we can simply apply principal weak
homoflatness. If, e,g., s = 0 and 8 = 1 then 1-0 =0-1, ¢ = al and
a’ = a0. Hence Ag satisfies condition (P) and is pullback flat.

Let us show that S is a right perfect monoid. Clearly, S satisfies con-
dition (K). Suppose that

1S CbyS ChsSC...
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is an ascending chain of cyclic subacts of a right S-act Bg. Then there exist
s,t € 5 such that by = bys and by = bst. If s = 1 or t = 1 then we are done.
If s =t =0 then by = b30 = (b30)0 = b30 = by. Hence S satisfies condition
(A), too. Thus S is a right perfect monoid, which means that Ag is also
projective. 1

3.8 Freeness

Here we try to answer the questions “When are all right Rees factor acts
with property X free?”.

Proposition 3.59 ([20]) All pullback flat right Rees factor acts of S are
free if and only if S is not left collapsible or S = {1}.

Proposition 3.59 and Corollary 3.50 imply the following result.

Corollary 3.60 All weakly pullback flat right Rees factor acts of S are free
of and only if S is not a right reversible weakly left collapsible monoid or

S ={1}.
Corollary 3.61 The following assertions are equivalent for a monoid S':

1. All weakly homoflat Rees factor acts of S are free.
2. All right Rees factor acts of S satisfying condition (P) are free.

3. S is not right reversible or S = {1}.

Proof.  Obviously 1. = 2. The equivalence of conditions 2. and 3. was
proved in [20]. Implication 3. = 1. follows from Proposition 3.26 by using
2. 1

Using Corollaries 3.53 and 3.61 we obtain the following corollary.
Corollary 3.62 The following assertions are equivalent for a monoid S':

1. All principally weakly homoflat right Rees factor acts of S are free.
All principally weakly flat right Rees factor acts of S are free.
All torsion free right Rees factor acts of S are free.

All right Rees factor acts of S are free.

S = {1}.

S e e
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Note that equivalence of conditions 2, 3,4 and 5 of this corollary was proved
in [20].
To prove the following corollary we need a proposition.

Proposition 3.63 ([24]) All pullback flat right S-acts are free if and only
of S is a group.

This proposition together with Corollary 3.60 (note that a group is both
right reversible and weakly left collapsible) imply the following result for
arbitrary acts.

Corollary 3.64 The following assertions are equivalent for a monoid S':

1. All right S-acts are free.
All torsion free right S-acts are free.
All principally weakly flat right S-acts are free.

All principally weakly homoflat right S-acts are free.

AR

All weakly homoflat right S-acts are free.

6. All right S-acts satisfying condition (P) are free.
7. All weakly pullback flat right S-acts are free.

8. 5 =A{1}.

3.9 Synopsis

Finally we present our results in the form of tables. We tabulate our results
obtained for Rees factor acts and arbitrary acts and for Rees factor acts,
cyclic acts and arbitrary acts over idempotent monoids.

Rows and columns of tables are labelled with flatness properties of acts,
the abbreviations used are the same as for Scheme 2. These properties are
arranged in order of decreasing strength. In the cell at the intersection of
row labelled X and column labelled Y is the class of all monoids such that
all right acts (or cyclic right acts or right Rees factor acts) with property
X over them have property Y. Since any property in any table implies the
property to the right of it or below it, we see that any class of monoids is
contained in every class lying above it or to the right of it. Actually the
class of monoids in a cell is the intersection of the classes above it and to
the right of it. So the diagonal cells play a crucial role, because if we knew
them we could, in principle, fill the whole table.
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For the tables we have used the following abbreviations:

(*) — no nontrivial right ideal is left stabilizing

(**) — no nontrivial right ideal is left stabilizing
and left annihilating

(FF*) — no nontrivial right ideal is left stabilizing
and strongly left annihilating

Ls. — left stabilizing

l.ann. — left annihilating

str..ann.  — strongly left annihilating

dl.zero — 5 has a left zero

dzero — 5 has a zero

l.coll. — left collapsible

wlc — weakly left collapsible

r.rev. — right reversible

C — right cancellative

P — right cancellative with a zero adjoined

G — group

G° — group with a zero adjoined

LAR — left almost regular

Reg. — regular.

Since idempotent monoids are regular, all acts over idempotent monoids are
principally weakly flat by [16]. In addition, pullback flatness and condition
(P) are the same for every act over an idempotent monoid by [1].
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KONSERVATIIVSED RUUDUD JA
POLUGOONIDE LAMEDUSEGA SEOTUD
OMADUSED

Kokkuvote

Selles t66s vaadeldakse poliigoone iile monoidi (ehk S-poliigoone, kus 5 on
monoid) ja poliigoonide neid omadusi, mis on iihel voi teisel viisil seotud
lamedusega. Tapsemalt Geldes kisitletakse monoidide homoloogilist klassi-
fikatsiooni poliigoonide omaduste jargi iile nende monoidide. See tahendab,
et vastust otsitakse jirgmist tiitipi kiisimustele: “Milliseid tingimusi peab
rahuldama monoid, et koik mingi omadusega parempoolsed poliigoonid iile
selle monoidi oleksid ka mingi teise omadusega?”. Levinumad lamedusega
seotud omadused, mida on homoloogilise klassifikatsiooni kidigus siiani vaa-
deldud, on tugev lamedus, tingimus (P), lamedus, nork lamedus, spetsi-
aalne nork lamedus ja vaandetus.

Parempoolset S-poliigooni nimetatakse tugevalt lamedaks, kui tensor-
korrutamine temaga séilitab kéik konservatiivsed ruudud vasakpoolsete S-
poliigoonide kategoorias. 2. peatiikis defineeritakse seda siilitamise nouet
formaalselt norgendades rida omadusi, mis jirelduvad tugevast lamedusest.
Edasi uuritakse, millised neist omadustest defineerivad erinevad poliigooni-
de klassid. Toestatakse, et selliselt iildistades saame kitte koik eespool-
mainitud lamedusega seotud omadused ning et lisaks sellele tekib veel 3
uut poliigoonide klassi.

3. peatiikis vaadeldakse monoidide homoloogilist klassifikatsiooni, kus-
juures erilise tihelepanu all on ‘uued’ omadused. Leitakse, millal Reesi fak-
torpoliigoonide korral iithest vaatluse all olevast omadusest jareldub teine,
real juhtudel on leitud vastus ka tsiikliliste v6i suvaliste poliigoonide jaoks.
Niiteks on juba varemuuritud omaduste jaoks leitud vastus kiisimusele,
milliste monoidide korral on koéik vidndeta parempoolsed poliigoonid spet-
siaalselt norgalt lamedad. FEraldi on kisitletud idempotentseid monoide.
Homoloogilise klassifikatsiooniga seotud tulemused on koondatud 3. peatiiki
lopus olevatesse tabelitesse.
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