$2$-affine complete algebras need not be affine complete
Abstract:
Given a finite algebra $\mathbf{A}$, we study the clone
$\mathrm{Comp} (\mathbf{A})$ of all congruence preserving
functions on $\mathbf{A}$, and the clone $\mathrm{Pol} (\mathbf{A})$ of
all polynomial functions on $\mathbf{A}$. We call an
algebra $n$-affine complete iff every $n$-ary
congruence preserving function is polynomial.
For each $k \in \mathbb{N}$, we exhibit an algebra that is $k$-affine
complete, but not $(k+1)$-affine complete.