Algebra of sections of topological algebras

Paul Tammo University of Tartu Tartu, Estonia

Let $(A(x), \tau(x))_{x \in X}$ be a family of topological algebras over \mathbb{C} , indexed by the points of a completely regular (*Hausdorff*) space X.

Consider the family of sections

$$\mathcal{F} \subset \left\{ s : X \to \bigcup_{x \in X} A(x); \ s(x) \in A(x), \text{ for any } x \in X \right\} = \prod_{x \in X} A(x)$$

which fulfils the following conditions:

- (F1) \mathcal{F} is an algebra under pointwise defined operations (addition, multiplication and multiplication by scalar),
- (F2) for any $x \in X$, $A(x) = \{s(x); s \in \mathcal{F}\}$,
- (F3) \mathcal{F} is a $\mathcal{C}(X)$ -module, with $\mathcal{C}(X)$ the algebra of \mathbb{C} -valued continuous functions on X.

We consider the topology on \mathcal{F} , induced by the product topology of

$$\prod_{x \in X} A(x).$$

Algebraic and topological properties of algebra ${\mathcal F}$ are introduced.

Results presented are achieved under the supervision of Mart Abel and Mati Abel.