Nelson algebras of rough sets

Jouni Järvinen Turku, Finland

Let R be a quasiorder (reflexive and transitive binary relation) on a set U. We denote $R(x) = \{y \in U \mid x R y\}$ for $x \in U$. For any subset $X \subseteq U$, the lower approximation of X is $X^{\blacktriangledown} = \{x \in U \mid R(x) \subseteq X\}$ and the upper approximation of X is $X^{\bigstar} = \{x \in U \mid R(x) \cap X \neq \emptyset\}$. For any $X \subseteq U$, the pair $(X^{\blacktriangledown}, X^{\bigstar})$ is called the rough set of X. Let RS be the set of all rough sets. We denote by \mathcal{RS} the set RS ordered coordinatewise, that is, $(X^{\blacktriangledown}, X^{\bigstar}) \leq (Y^{\blacktriangledown}, Y^{\bigstar})$ if and only if $X^{\blacktriangledown} \subseteq Y^{\blacktriangledown}$ and $X^{\bigstar} \subseteq Y^{\bigstar}$.

We showed in [1] that \mathcal{RS} is an algebraic and completely distributive lattice, meaning that every element of \mathcal{RS} can be expressed as a join of completely join-irreducible elements; completely join-irreducible elements of \mathcal{RS} were also described.

In [2], we proved that on the lattice \mathcal{RS} we can define a Nelson algebra \mathbb{RS} , and if A is a Nelson algebra defined on an algebraic lattice, then there exists a set U and a quasiorder R on U such that A is isomorphic to \mathbb{RS} .

As new observations it is shown that: (i) For *every* Nelson algebra \mathbb{A} , there exists a set U and a quasiorder R on U such that \mathbb{A} is isomorphic to a subalgebra of \mathbb{RS} . (ii) For each quasiorder R, there exists a T₀-space \mathcal{T} on the set \mathcal{J} of all completely join-irreducible elements of \mathbb{RS} such that the lattice $(\mathcal{T}, \cup, \cap)$ can be made to a Nelson algebra isomorphic to \mathbb{RS} .

Some illustrative examples of the above constructions are presented.

References

- Jouni Järvinen, Sándor Radeleczki, and Laura Veres, Rough sets determined by quasiorders, Order 26, 2009, 337–355.
- [2] Jouni Järvinen and Sándor Radeleczki, Representation of Nelson algebras by rough sets determined by quasiorders, Algebra Universalis 66, 2011, 163–179.