Unique representation systems

Ago-Erik Riet
University of Tartu
Tartu, Estonia

Let G be a structure with addition defined on it. If $S, A, B \subset G$ then $\{A, B\}$ is a unique representation system for S if $S=A+B$ and every element of S has a unique representation as $a+b$ where $a \in A, b \in B$ (see for example [2]). We write $S=A \oplus B$. Instead of two sets A and B we can consider a family $\mathcal{A}=\left(A_{i}\right)_{i \in I}$ of sets and require that we choose a 0 from all but a finite number of sets A_{i} for the representation. We write $S=\bigoplus_{i \in I} A_{i}$. We classify unique representation systems for S being the set of non-negative integers under addition (in this special case called additive systems) - the two-set case was done in [1] and the general case in [2].

References

[1] F. Benevides, J. Hulgan, N. Lemons, C. Palmer, A. Riet, J. Wheeler, Additive properties of a pair of sequences, Acta Arith. 139 (2009), no. 2, 185-197.
[2] M. Nathanson, Additive systems and a theorem of de Bruijn, arXiv: $1301.6208 \mathrm{v} 2,12$ Apr 2013.

