Clones of compatible functions of abelian groups

Kalle Kaarli University of Tartu Tartu, Estonia

Clone is a set of finitary functions on a given set A which is closed with respect to composition and contains all projection maps. Given and algebra \mathbf{A} , the set of all term functions of \mathbf{A} forms a clone which is denoted by Clo \mathbf{A} . This is actually the clone generated by all basic operations of \mathbf{A} . The members of the clone generated by all basic operations and all constants of \mathbf{A} are called *polynomial functions of* \mathbf{A} . This clone is denoted by Pol \mathbf{A} . Obviously, all polynomial functions of \mathbf{A} preserve all congruences of \mathbf{A} , or, in other words, are (congruence) *compatible*. Moreover, all compatible functions of \mathbf{A} form a clone denoted by Comp \mathbf{A} . Thus, we have the following inclusions, for any algebra \mathbf{A} :

$$Clo \mathbf{A} \subseteq Pol \mathbf{A} \subseteq Comp \mathbf{A}$$
.

Recall that an algebra \mathbf{A} is called *affine complete*, if $Pol\mathbf{A} = Comp\mathbf{A}$. For any class \mathcal{V} of algebras we introduce three subclasses:

- \mathcal{V}_1 the class of all $\mathbf{A} \in \mathcal{V}$ such that CompA is finitely generated;
- \mathcal{V}_2 the class of all $\mathbf{A} \in \mathcal{V}$ such that CompA is generated by a finite subset plus all constants;
- \mathcal{V}_3 the class of all $\mathbf{A} \in \mathcal{V}$ such that CompA is generated by Comp_nA, for some positive integer n.

Obviously, the following inclusions hold: $\mathcal{V}_1 \subseteq \mathcal{V}_2 \subseteq \mathcal{V}_3$.

The aim of the present work was to describe the classes \mathcal{V}_i , i = 1, 2, 3, if \mathcal{V} is the variety of abelian groups. The work is not finished yet. As an example, we present the following result.

Theorem. Let \mathcal{V} be the class of all abelian groups. Then $\mathbf{A} \in \mathcal{V}_1$ if and only if \mathbf{A} is finitely generated and affine complete or \mathbf{A} is the direct sum of two finite groups of coprime exponents, one of them cyclic and the other affine complete.

This talk is based on joint work with Erhard Aichinger (Linz).