Injective hulls for ordered algebras

Valdis Laan University of Tartu Tartu, Estonia

Let \mathcal{C} be a category and let \mathcal{M} be a class of morphisms in \mathcal{C} . An object Q from \mathcal{C} is called \mathcal{M} -injective in \mathcal{C} if for any morphism $h : A \to B$ in \mathcal{M} and any morphism $f : A \to Q$ in \mathcal{C} there exists a morphism $g : B \to Q$ in \mathcal{C} such that gh = f.

We consider injecitvity in categories, where objects are ordered algebras of the same type and morphisms are monotone mappings $f: A \to B$ such that

$$\omega_B(f(a_1),\ldots,f(a_n)) \leqslant f(\omega_A(a_1,\ldots,a_n))$$

for every *n*-ary operation ω and

$$\omega_B \leqslant f(\omega_A)$$

for every nullary operation ω . As \mathcal{M} we use a class of specific orderembeddings. It turns out that \mathcal{M} -injective objects in such categories are precisely sup-algebras. An ordered algebra is called a *sup-algebra* if its underlying poset is a complete lattice and operations are compatible with joins (suprema). Many quantale-like structures are examples of sup-algebras.

For ordered algebras satisfying certain assumption one can also give a construction of injective hulls.

This talk is based on joint research with Xia Zhang.