
Instructor  Dominique Unruh <<surname> at ut dot ee> 
TA  Ehsan Ebrahimi <<surname> dot math at gmail dot com> (submit homework solutions here) 
Lecture Period  September 3, 2018  December 21, 2018 
Lectures  Mondays, 10:1511:45, room 218 (Paabel)
(Dominique; may sometimes be switched with tutorial) 
Practice sessions 
Fridays, 10:1511:45, room 220 (Paabel) (Dominique / Ehsan) 
Course Material  Lecture
notes, blackboard photos, practice blackboard photos, videos and exam study guide. 
Language  English 
Mailing list  utqcrypto@googlegroups.com 
Exam  TBA 
Contact  Dominique Unruh <<surname> at ut dot ee> 
20180907 (lecture)  Introduction and motivation.  [video] 
20180910 (lecture)  Mathematics of single qubits.  [video] 
20180914 (practice)  Small exercises with single qubits.  
20180917 (practice)  ElizurVeidman bomb tester 
Out  Due  Homework  Solution 

20180912  20180919  Homework 1  Solution 1 
20180920  20180927  Homework 2 
In quantum cryptography we use quantum
mechanical effects to construct secure protocols. The paradoxical
nature of quantum mechanics allows for constructions that solve
problems known to be impossible without quantum mechanics. This lecture
gives an introduction into this fascinating area.
Possible topics include:
You need no prior knowledge of quantum mechanics. You should have heard some introductory lecture on cryptography. You should enjoy math and have a sound understanding of linear algebra.
[NC00] Nielsen, Chuang. "Quantum Computation and Quantum Information" Cambridge University Press, 2000. A standard textbook on quantum information and quantum computing. Also contains some quantum cryptography.
Further
reading may be suggested during the
course. See the "further reading" paragraphs in the lecture notes.